# Cumulative Subject Index for Volumes 135–1411

Α

Acetic acid

nondoped sol-gel ZrO<sub>2</sub> prepared with, tetragonal nanophase stabilization, 135, 28

Acid/base properties

hydrotalcite-derived MgAlO oxides calcined at varying temperatures, 137, 295

Acid delithiation

LiCoO<sub>2</sub>, products of, structural features, 140, 116

Acids

solid,  $Cs_5(HSO_4)_3(H_2PO_4)_2$  with unique hydrogen bond network, X-ray diffraction study, 140, 251

Aliovalent cation doping

effect on electrical conductivity of Na<sub>2</sub>SO<sub>4</sub>, 138, 183

Alkaline earth carbonates

thermal decomposition, modeling based on lattice energy changes, 137, 332

Alkaline earth peroxides

thermal decomposition, modeling based on lattice energy changes, 137, 346 1. $\omega$ -Alkanediols

and 1-alkanols, intercalation into NbOPO<sub>4</sub> and NbOAsO<sub>4</sub>, 141, 64 1-Alkanols

and 1,ω-alkanediols, intercalation into NbOPO<sub>4</sub> and NbOAsO<sub>4</sub>, **141**, 64 Alkyltrimethylammonium chromates

layered, thermal and structural studies, 139, 310

Alloys

 $\beta$ -brass-type, LiIn and LiCd, formation by pressure-induced transformation of NaTl-type phases, **137**, 104

La<sub>12</sub>Mn<sub>2</sub>Sb<sub>30</sub>, electronic structure, **139**, 8

Ni-Fe, composites with magnetite, synthesis and microstructure, 135,

nonstoichiometric B8-type phases  $A_{1+x}B$  (A = Co,Ni; B = Ge,Sn), sinusoidal diffuse scattering loci in, simulation, **140**, 402

Alluaudite structure

Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub> transition to, induction by cationic substitutions, 137,

 $NaFe_{3.67}(PO_4)_3$ , **139**, 152

Aluminum

Al<sup>3+</sup>, substitution for Mn<sup>3+</sup> in  $Ln_{0.5}A_{0.5}$ MnO<sub>3</sub> (Ln = Nd,Gd,Y; A = Ca,Sr), 137, 365

AlF<sub>3</sub>, temperature- and gas-phase-mediated reorganization and paramagnetic doping, **139**, 27

 $LnAlO_3$  (Ln = La-Lu, Y) perovskites, stability, calorimetric study, **141**,

 $\alpha$ -Al<sub>2</sub>O<sub>3</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, oxides supported with, formation of aluminates of Ni, Co, Cu, and Fe from, **135**, 59

 $Ln_3Al_5O_{12}$  (Ln = La-Lu, Y) garnets, stability, calorimetric study, **141**,

Al<sub>13</sub>O<sub>4</sub>(OH)<sub>24</sub>(H<sub>2</sub>O)<sup>7+</sup><sub>12</sub>, encapsulation into MoS<sub>2</sub> and WS<sub>2</sub> and Rietveld structural characterization, **139**, 22

Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> nanocrystals, preparation and characterization, 141, 70

BaAlO<sub>4</sub>H, synthesis and structure, 141, 570

 $Ba_2Mg_6Al_{28}O_{50}$ , crystal structure, 136, 258

BaO–Al<sub>2</sub>O<sub>3</sub>–MgO system, Al-rich part phase relationships, **136**, 253

related compound Ba<sub>2</sub>Mg<sub>6</sub>Al<sub>28</sub>O<sub>50</sub>, crystal structure, **136**, 258

(Ca,Gd)<sub>2</sub>(Al,Ti)O<sub>4</sub>, crystal structure, 139, 204

Ce-Al-(Si,Ge) systems, phase equilibria and physical properties, 137, 191

 $CoAl_2O_4$ , formation from  $\alpha$ - and  $\gamma$ - $Al_2O_3$ -supported oxides, 135, 59

 $CuAl_2O_4$ , formation from  $\alpha$ - and  $\gamma$ - $Al_2O_3$ -supported oxides, 135, 59

CuAl<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(F,OH)<sub>2</sub>, hydrothermal synthesis, crystal structure, and properties, **141**, 527

ethylenediamine-templated aluminum cobalt phosphate, synthesis and zeolite-type structure, **136**, 210

FeAl<sub>2</sub>O<sub>4</sub>, formation from α- and γ-Al<sub>2</sub>O<sub>3</sub>-supported oxides, 135, 59 hydrotalcite-derived MgAlO oxides calcined at varying temperatures, structural and acid/base properties, 137, 295

 $\text{Li}_9\text{Al}_3(P_2O_7)_3(PO_4)_2$ , crystal structure and cation transport properties, 138, 32

 $[N_2C_3H_5][AlP_2O_8H_2 \cdot 2H_2O]$  and  $2[N_2C_3H_5][Al_3P_4O_{16}H]$ , synthesis and structure, letter to editor, **136**, 141

NiAl<sub>2</sub>O<sub>4</sub>, formation from  $\alpha$ - and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>-supported oxides, 135, 59

 $Ni_{1-x}O$  doped with, spinel precipitation in, **140**, 38

RPtAl (R = Ce, Pr, Nd), magnetic structures, 140, 233

ScAl<sub>3</sub>C<sub>3</sub>, crystal structure, 140, 396

UAl<sub>3</sub>C<sub>3</sub>, crystal structure, **140**, 396

Y<sub>4</sub>Al<sub>2</sub>O<sub>9</sub>, high-temperature neutron diffraction study, **141**, 466

Zr<sub>3</sub>Al<sub>3</sub>C<sub>5</sub>, crystal structure, **140**, 396

Amines

zirconium phosphate fluorides templated with, hydrothermal synthesis and crystal structures. 135, 293

Ammonium

anhydrous bisoctyltrimethylammonium dichromate, crystal structure, 139, 310

1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and physical properties, 136, 93

ethylenediamine-templated 1-D  $[enH_2][Zr(HPO_4)_3]$  and 2-D  $[enH_2]_{0.5}[Zr(PO_4)(HPO_4)]$ , crystal structures, **140**, 46

 $(NH_4)_x K_{1-x} Bi_3 S_5$ , preparation, letter to editor, 136, 328

NH<sub>4</sub>NbWO<sub>6</sub> defect pyrochlore, crystal structure and phase transition, **141**, 537

NH<sub>4</sub>VP<sub>2</sub>O<sub>7</sub>, structural study by X-ray powder diffraction, **136**, 181 Ammonium hydroxide

nondoped sol-gel ZrO<sub>2</sub> prepared with, tetragonal nanophase stabilization, 135, 28

Ammonolysis

LiF–WO<sub>3</sub>, in situ X-ray diffraction study: detection and crystal structure of  $\text{Li}_{0.84}\text{W}_{1.16}\text{N}_2$ , 138, 154

Amorphization

 $Ca_3(VO_4)_2$  at high pressure, 139, 161

GeSe<sub>2</sub> at high pressure, 141, 248

<sup>&</sup>lt;sup>1</sup>Boldface numbers indicate volume; lightface numbers indicate pagnation.

Annealing

In-Bi<sub>2</sub>S<sub>3</sub> thin films, effects on structural and electrical properties, 138, 290

Antiferromagnets

GdAgGe, GdAuGe, GdAu<sub>0.44(1)</sub>In<sub>1.56(1)</sub>, and GdAuIn, structure, bonding, magnetic susceptibility, and <sup>155</sup>Gd Mössbauer spectroscopy, **141**, 352

Antimony

 $[(CH_3NH_3)_{1.03}K_{2.97}]Sb_{12}S_{20} \cdot 1.34H_2O$ , hydrothermal synthesis and crystal structure, **140**, 387

La<sub>12</sub>Mn<sub>2</sub>Sb<sub>30</sub> alloy, electronic structure, **139**, 8

LaNi<sub>0.95</sub>Sb<sub>0.05</sub>O<sub>3</sub> perovskites, metal–insulator transitions in, **136**, 313  $M_2$ Sb intermetallics, nonmetal insertion in h.c.-like metallic distribution, **135**, 218

SbRe<sub>2</sub>O<sub>6</sub> with Re–Re bond, preparation, crystal structure, and electrical resistivity, **138**, 245

Sb<sub>2</sub>Te<sub>3</sub> single crystals, behavior of Ag admixtures in, 140, 29

 $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O$ , synthesis and crystal structure, 140, 134

Apatite

anion-deficient structure, in lead alkali orthovanadates, **141**, 373 NaLa<sub>9</sub>(GeO<sub>4</sub>)<sub>6</sub>O<sub>2</sub>, single-crystal growth and structure determination, **139**, 304

Arsenic

 $M_2$ As intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218

ethylenediamine-templated zinc arsenate, synthesis and zeolite-type structure, **136**, 210

Li<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, cathode materials for rechargeable lithium batteries, 3D framework structure, 135, 228

LiNi(AsO<sub>4</sub>), spectroscopic and magnetic properties and crystal structure refinement, 141, 508

 $Na_3Fe_2(AsO_4)_3$ , cationic substitutions, associated transition from garnet to alluaudite structure, 137, 112

NaNi(AsO<sub>4</sub>), spectroscopic and magnetic properties, 141, 508

NbOAsO<sub>4</sub>, intercalation of 1-alkanols and 1,ω-alkanediols into, **141**, 64

Rb<sub>2</sub>MoO<sub>2</sub>As<sub>2</sub>O<sub>7</sub>, preparation and crystal structure, **141**, 500

Rb<sub>3</sub>Sc<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, synthesis and structure determination by synchrotron single crystal methods, **139**, 299

Atomic distortions

in phase transition in ABW-type CsLiSO<sub>4</sub>, 138, 267

Atomic position

oxygen in Ga-In-Sn-O ceramic, determination with direct methods and electron diffraction, letter to editor, **136**, 145

В

Ball milling

formation of Ag and Cu metals from hemioxides, 136, 51

high-energy, nanocrystalline Zn-Mn spinel ferrites obtained by, chemical homogeneity, **141**, 10

Barium

Ba<sup>2+</sup>, doping of Na<sub>2</sub>SO<sub>4</sub>, effect on electrical conductivity, **138**, 369 Ba<sub>3</sub>AlO<sub>4</sub>H, synthesis and structure, **141**, 570

 $Ba_4(Ba_xPt_{1-x}^{2+})Pt_2^{4+}O_9$  twinned crystal, diffraction and DAFS studies, 140, 201

Ba<sub>2</sub>BiGa<sub>11</sub>O<sub>20</sub>, preparation and crystal structure, 138, 313

BaBiO<sub>3</sub>, disproportionation in, stabilization, contrast with stabilization of spontaneous polarization of H<sub>2</sub> molecules, **138**, 369

BaBPO<sub>5</sub>, crystal structure and thermal decomposition, 135, 43

BaCO<sub>3</sub>, thermal decomposition, modeling based on lattice energy changes, 137, 332

BaCo<sub>1-x</sub>Cu<sub>x</sub>S<sub>2-y</sub> layered sulfide, synthesis, structure, and properties, 138, 111

Ba<sub>6</sub>Cu<sub>12</sub>Fe<sub>13</sub>S<sub>27</sub>, synthesis and crystal structure, **128**, 62; comment, **137**, 353; reply, **137**, 354

 $REBa_2Cu_3O_y$  (RE = Y,Eu,La), shock synthesis, effect of ionic radius difference of  $RE^{3+}$  and  $Ba^{2+}$ , 136, 74

Ba-Cu-O-Cl system, phase diagram, 141, 378

Ba<sub>2</sub>Cu<sub>3</sub>O<sub>4</sub>Cl<sub>2</sub> and Ba<sub>3</sub>Cu<sub>2</sub>O<sub>4</sub>Cl<sub>2</sub>, magnetic properties, **141**, 378

 $Ln_2$ Ba $_2$ Cu $_2$ Ti $_2$ O $_{11-\delta}$  (Ln = La,Nd,Eu,Tb), sol-gel synthesis and simultaneous oxidation, 138, 141

 $BaFe_{12}O_{19}$  hexagonal ferrite, Raman spectra and vibrational analysis, 137. 127

 $RBa_2Fe_3O_{8+x} \ phases \ (R=La,Nd,Sm,Gd,Dy,Er,Yb,Lu,Y), \ powder \ neutron \ and \ X-ray \ diffraction \ studies, \ 136,\ 21$ 

 $REBa_2Fe_3O_{8+w}$  triple perovskites (RE = Dy,Er,Y), <sup>57</sup>Fe Mössbauer study, **139**, 168

 $BaGa_{12}O_{19}$ , magnetoplumbite-type compound, preparation and crystal structure, 136, 120

BaHfN<sub>2</sub>, synthesis, structure, and magnetic properties, 137, 62

 $BaHf_{1-x}Zr_xN_2$  solid solution, synthesis, structure, and magnetic properties, 137, 62

 $Ba_4A'Ir_2O_9$  (A' = Cu,Zn), commensurate and incommensurate phases, 136, 103

Ba<sub>3</sub>Li<sub>2</sub>Cl<sub>2</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>6</sub> with intersecting tunnel structure, synthesis, 141, 587

Ba<sub>2</sub>Mg<sub>6</sub>Al<sub>28</sub>O<sub>50</sub>, crystal structure, **136**, 258

Ba<sub>2</sub>MoO<sub>3</sub>F<sub>4</sub>, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd REDOR NMR study, **140**, 285

BaO.

structure and stability, *ab initio* quantum mechanical study, **140**, 103 thermal decomposition, modeling based on lattice energy changes, **137**, 346

BaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, Al-rich part

phase relationships, 136, 253

related compound Ba<sub>2</sub>Mg<sub>6</sub>Al<sub>28</sub>O<sub>50</sub>, crystal structure, 136, 258

Ba-Pt-O system  $(\frac{4}{3} < Y = \text{Ba/Pt} < \frac{5}{2})$ , synthesis and crystal structure, **140**, 194

BaScO<sub>2</sub>F perovskite, synthesis and structure, 139, 422

 $BaSnO_3$ ,  $Ba_2SnO_4$ , and  $Ba_3Sn_2O_7$ ,  $Pr^{4+}$  doped in, EPR study, 138, 329

 ${\rm Ba_5Ta_4O_{15}}$ – ${\rm MZrO_3}$  ( $M={\rm Ba,Sr}$ ) system, hexagonal perovskites in, synthesis and structural study, **141**, 492

BaThN<sub>2</sub>, synthesis and structural characterization, 138, 297

6H-Ba(Ti,Fe<sup>3+</sup>,Fe<sup>4+</sup>)O<sub>3- $\delta$ </sub> solid solution, structural analysis, 135, 312

 $BaV_6O_{16} \cdot nH_2O$ , hydrothermal synthesis and crystal structure, **140**, 219  $Ba_3V_2O_3(PO_4)_3$ , with chain-like structure, **135**, 302

Ba<sub>2</sub>(VO<sub>2</sub>)(PO<sub>4</sub>)(HPO<sub>4</sub>)·H<sub>2</sub>O, with trigonal bipyramidal VO<sub>5</sub> groups, hydrothermal synthesis and crystal structure, **140**, 272

Ba<sub>2</sub>WO<sub>3</sub>F<sub>4</sub>, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd REDOR NMR study, **140**, 285

ErBa<sub>2</sub>Cu<sub>3</sub>O<sub>6.5</sub>, half filling of O intercalation in, new orthorhombicity type and cell volume expansions near, 135, 307

Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub>, electronic and magnetic properties, effects of cationic substitution, **141**, 546

La<sub>1-x</sub>Ba<sub>x</sub>CoO<sub>3</sub> ceramics, conductivity and IR absorption, 137, 211

 ${
m LaBa_2Fe_3O_{8+w}}$  ( -0.20 < w < 0.83), cubic perovskite-type phase,  $^{57}{
m Fe}$  Mössbauer spectroscopy, **138**, 87

 ${\rm Sr_{2-x}Ba_xCuO_2F_{2+\delta}}$  superconductors, synthetic pathways and associated structural rearrangements, 135, 17

 $Y_2Ba_4Cu_7O_{15-\delta}$ , TEM and NQR studies, 139, 266

Basicity, see also Acid/base properties

oxidic systems, bulk optical basicity table for, 137, 94

rechargeable lithium,  $\text{Li}_3\text{Fe}_2(X\text{O}_4)_3$  (X = P,As) cathode materials for, 3D framework structure, 135, 228

Beryllium

AgBePO<sub>4</sub>, crystal structure and crystal chemistry, 141, 177

BeO<sub>2</sub>, structure and stability, *ab initio* quantum mechanical study, **140**, 103

β-Brass-type alloys

LiIn and LiCd, formation by pressure-induced transformation of NaTltype phases, 137, 104

Bicyclononanone

order-disorder phase transition in, spectroscopic and differential scanning calorimetric studies, **136**, 16

4,4'-Bipyridine

[Zn(4,4'-bipy)(H<sub>2</sub>O)(SO<sub>4</sub>)]·0.5H<sub>2</sub>O coordination polymer with interwoven double-layer structure, synthesis and characterization, **138**, 361

Bismuth

Ba<sub>2</sub>BiGa<sub>11</sub>O<sub>20</sub>, preparation and crystal structure, **138**, 313

BaBiO<sub>3</sub>, disproportionation in, stabilization, contrast with stabilization of spontaneous polarization of H<sub>2</sub> molecules, **138**, 369

Bi<sup>3+</sup>, electronic lone pair configuration in modulated Bi-2212 type oxides, **139**, 194

 $Bi(Bi_{12-x}Te_xO_{14})Mo_{4-x}V_{1+x}O_{20}~(0\leq x\leq 2.5)$  solid solutions, synthesis and structural evolution,  $139,\,185$ 

BiCa<sub>2</sub>VO<sub>6</sub>, synthesis and structure, 137, 143

BICOVOX.15, structure, single-crystal neutron diffraction study at room temperature, **141**, 241

BiCu<sub>2</sub>VO<sub>6</sub>, synthesis and structure, 141, 149

Bi<sub>2</sub>O<sub>3</sub>, systems with Nb<sub>2</sub>O<sub>5</sub>, Ta<sub>2</sub>O<sub>5</sub>, MoO<sub>3</sub>, or WO<sub>3</sub>, review, 137, 42

 $(1-x)Bi_2O_3 \cdot xCaO$   $\gamma$ -type solid solution, short-range order in, electron diffraction study and relationship to low-temperature  $Ca_4Bi_6O_{13}$ ,

 $RBi_2O_4NO_3$  (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), preparation and crystal structure, **139**, 321

BiO<sub>1.5</sub>-YbO<sub>1.5</sub>-CuO system, phase relations, 139, 398

Bi<sub>6.67</sub>(PO<sub>4</sub>)<sub>4</sub>O<sub>4</sub>, synthesis and crystal structure, 139, 274

Bi<sub>2</sub>S<sub>3</sub>, thin films prepared by thermal evaporation and chemical bath deposition, properties, **136**, 167

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>, transformation to Bi<sub>2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub>, 139, 1

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, heavily Pb-substituted single crystals, two-phase microstructures generating efficient pinning centers, 138, 98

 $Bi_2Sr_2Co_{6+\delta}$  ceramic, stability, oxygen nonstoichiometry, and transformations, 136, 1

 $Bi_{3.6}Sr_{12.4}Mn_8O_{28+\delta},$  with tubular structure, synthesis and crystal chemistry,  $138,\,278$ 

Bi<sub>2</sub>Te<sub>3</sub> single crystals, behavior of Ag admixtures in, 140, 29

Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub>, phase transitions, **135**, 175

Bi<sub>1.74</sub>Ti<sub>2</sub>O<sub>6.62</sub> pyrochlore, synthesis and structure, 136, 63

 $Bi_9(V_{1-x}P_{x/2}ClO_{18}$  series  $(0 \le x \le 1)$ , synthesis, crystal structure, IR characterization, and electrical properties, 136, 34

 $\text{Ca}_4 \text{Bi}_6 \text{O}_{13}$ , low-temperature, relationship to short-range order in  $(1-x) \text{Bi}_2 \text{O}_3 \cdot x \text{CaO}$   $\gamma$ -type solid solution, 135, 201

IBi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>y</sub>, superconducting intercalates, charge transfer-T<sub>c</sub> relationship, 138, 66

 $In-Bi_2S_3$ , annealed thin films, structural and electrical properties, 138, 290

K<sub>4</sub>Bi<sub>2</sub>O<sub>5</sub>, synthesis and crystal structure, 139, 342

 $KBi_3S_5$ , open-framework semiconductors, preparation of topotactic derivatives of, letter to editor, 136, 328

LiI<sub>3</sub>Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> layered cuprate, synthesis and characterization, 141, 452

Bisoctyltrimethylammonium dichromate

anhydrous, crystal structure, 139, 310

Bonding

in GdAgGe, GdAuGe, GdAu<sub>0.44(1)</sub>In<sub>1.56(1)</sub>, and GdAuIn antiferromagnets, **141**, 352

in  $\text{Li}_{1-x}\text{H}_x\text{IO}_3$ -type complex crystals, 135, 121

 $MO_6$  polyhedra in compounds related to  $La_2Li_{1/2}M_{1/2}O_4$  (M(III) = Co, Ni, Cu), 138, 18

Re-Re, SbRe<sub>2</sub>O<sub>6</sub> with, preparation, crystal structure, and electrical resistivity, 138, 245

Sc-Sc in ScNiP, 137, 218

in Zr<sub>2.7</sub>Hf<sub>11.3</sub>P<sub>9</sub>, **136**, 221

Boron

 $M_2$ B intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218

BaBPO<sub>5</sub>, crystal structure and thermal decomposition, 135, 43

 $B_4C-Me_x^{IV-Vi}B_y$  (Me=Ti,V,Cr,W), activated sintered materials, structural and mechanical properties, 137, 1

 $M_2$ BN<sub>2</sub>X (M = Ca,Sr; X = F,Cl), compounds with isolated BN<sub>2</sub><sup>3-</sup> units, 135, 194

Ln<sub>3</sub>(BO<sub>3</sub>)<sub>2</sub>F<sub>3</sub> (Ln = Sm,Eu,Gd), ab initio structure determination, **139**, 52 KBH<sub>4</sub>, reduction of KMnO<sub>4</sub> in aqueous solutions: synthesis of manganese oxides, **137**, 28

 $LaB_3O_6,$  crystalline and glass modifications, vibronic transitions of  $Gd^{3\,+}$  and  $Eu^{3\,+}$  in,  $136,\,206$ 

 $(\text{Li}_x \text{V}_{1-x})_3 \text{BO}_5$  ( $x \simeq 0.3$ ), disordered S = 1 system, crystal structure and electronic state, **141**, 418

Na<sub>5</sub>[B<sub>2</sub>P<sub>3</sub>O<sub>13</sub>], hydrothermal and microwave-assisted synthesis, letter to editor, **140**, 154

TlB<sub>5</sub>O<sub>8</sub>, crystal structure, 136, 216

 $TlB_5O_6(OH)_4 \cdot 2H_2O$ , dehydration, 136, 216

 $YB_{56}$  with  $YB_{66}$  structure, Y atoms in, digital HREM imaging, 135, 182 Bromine

Cs<sub>2</sub>YbNb<sub>6</sub>Br<sub>18</sub>, twinning and atomic structure of twin interface, **141**, 140

K<sub>4</sub>Zr<sub>6</sub>Br<sub>18</sub>C, structure, **139**, 85

MNBr (M = Zr,Ti) system, electronic band structure, 138, 207

Ta<sub>3</sub>SBr<sub>7</sub>, crystal structure, 140, 226

TIBr, defects and ionic conductivity at high pressure and temperature, 141, 462

2-Bromo-2-nitropropane-1,3-diol

crystals, kinetics and mechanism of prephase state accumulation and phase transition, 137, 231

Bronze

Ag<sub>0.7</sub>Mo<sub>3</sub>O<sub>7</sub>(PO<sub>4</sub>), built up from ReO<sub>3</sub>-type slabs, synthesis, structure, and properties, 140, 128

 $H_xMoO_3$ , protonic locations in, 141, 255

hydrated molybdenum bronze, Cs/Na ion exchange and synthesis of cesium molybdenum bronze at low temperature, 137, 12

 $Pb_x(PO_2)_4(WO_3)_{2m}$  (6 \le m \le 10), characterization, **139**, 362

Brownmillerite

La<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>, structure and magnetic properties, **141**, 411

Brushite

composites with polymer, percolation and modeling of proton conduction in, **141**, 392

С

Cadmium

(1:1)  $Cd_3^{II}[(Tr^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O$  complexes (Tr = Co, Fe), structural and spectral studies, **140**, 140

Cd<sub>4</sub>P<sub>2</sub>Cl<sub>3</sub>, crystal structure, 137, 138

Cd<sub>7</sub>P<sub>4</sub>Cl<sub>6</sub>, crystal structure, 137, 138

 $A_2$ CdP<sub>2</sub>Se<sub>6</sub> (A = K,Rb,Cs), synthesis, structure, and optical and thermal properties, 138, 321

CdWO<sub>3</sub>F<sub>2</sub>, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd REDOR NMR study, **140**, 285

LiCd, pressure-induced phase transformation from NaTl-type phases to  $\beta$ -brass-type alloys, **137**, 104

Rb<sub>2</sub>CdCl<sub>4</sub>, X-ray diffraction and electronic structure, 140, 371

Calcium

BiCa<sub>2</sub>VO<sub>6</sub>, synthesis and structure, 137, 143

(1 – x)Bi<sub>2</sub>O<sub>3</sub> · xCaO γ-type solid solution, short-range order in, electron diffraction study and relationship to low-temperature Ca<sub>4</sub>Bi<sub>6</sub>O<sub>13</sub>, 135, 201

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>, transformation to Bi<sub>2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub>, **139**, 1

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, heavily Pb-substituted single crystals, two-phase microstructures generating efficient pinning centers, 138, 98

 $Ca_4Bi_6O_{13}$ , low-temperature, relationship to short-range order in  $(1-x)Bi_2O_3 \cdot xCaO$   $\gamma$ -type solid solution, 135, 201

 $Ca_2BN_2X$  (X = F,Cl), compounds with isolated  $BN_2^{3-}$  units, 135, 194  $CaCl_2$ , structure candidates, determination, 136, 233

CaCO<sub>3</sub>, thermal decomposition, modeling based on lattice energy changes, 137, 332

 $Ca_xCoO_2$  (0.26  $\leq x \leq$  0.50), topotactic synthesis, **141**, 385

 $\text{Ca}_3\text{Co}_{1-x}B_{1+x}\text{O}_6$  (B=Ir,Ru), one-dimensional oxides, synthesis and magnetic properties, **140**, 14

CaF<sub>2</sub>, structure candidates, determination, 136, 233

CaFe<sub>1/2</sub>Nb<sub>1/2</sub>O<sub>3</sub>, crystal chemistry, 138, 272

(Ca,Gd)<sub>2</sub>(Al,Ti)O<sub>4</sub>, crystal structure, 139, 204

CaHPO<sub>4</sub>·2H<sub>2</sub>O phosphates, composites with polymer, percolation and modeling of proton conduction in, **141**, 392

Ln<sub>0.5</sub>Ca<sub>0.5</sub>MnO<sub>3</sub> (Ln = Nd,Gd,Y), charge-ordered states, distinction based on chemical melting, 137, 365

 $Ln_{1-x}Ca_xMnO_3$  (Ln = La,Pr,Nd), charge-ordered, effect of internal pressure, letter to editor, **135**, 169

 $\alpha$ -Ca<sub>3</sub>N<sub>2</sub>, vibrational spectra and decomposition, **137**, 33

structure and stability, *ab initio* quantum mechanical study, **140**, 103 thermal decomposition, modeling based on lattice energy changes, **137**, 346

CaO-MnO solid solutions, energy of mixing, ab initio Hartree-Fock study, 137, 261

Ca–Pb hydroxyapatites, thermal and structural properties and oxidation of methane, 135, 86

CaS:Eu,La, Eu valencies in, 138, 149

CaSO<sub>4</sub>·2H<sub>2</sub>O, dehydration, Controlled transformation Rate Thermal Analysis, **139**, 37

 $(Ca_{1-x}Sr_x)MnO_3$ , Mn–O–Mn angles in, relationship to electrical properties, 137, 82

 $Ca_{1-x}Sr_xNbO_3$  (0  $\leq x \leq$  1) perovskite-type phases, synthesis, structure, and electron microscopy, **141**, 514

 $CaTi_{1-2x}Fe_xNb_xO_3$  perovskite series, structural study, 138, 272

CaTiO<sub>3</sub>, Gd-doped, charge compensation in, **124**, 77; comment, **137**, 355; reply, **137**, 357

CaTi<sub>2</sub>O<sub>4</sub> with pseudo-brookite-type structure, synthesis, **141**, 338

CaTiO<sub>3</sub>/SrTiO<sub>3</sub> system, structures in, 139, 238

 ${\rm CaVO_{3-\delta}},$  oxygen nonstoichiometry, structures, and physical properties, 135, 36

Ca<sub>3</sub>(VO<sub>4</sub>)<sub>2</sub>, amorphization at high pressure, 139, 161

IBi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>y</sub>, superconducting intercalates, charge transfer–T<sub>c</sub> relationship, **138**, 66

(La<sub>0.1</sub>Ca<sub>0.9</sub>)(Mn<sub>1-x</sub>Ge<sub>x</sub>)O<sub>3</sub>, electrical properties, effect of Ge<sup>4+</sup>, **140**, 431 La<sub>2/3</sub>Ca<sub>1/3</sub>Mn<sub>1-x</sub>In<sub>x</sub>O<sub>3</sub> perovskites, structural, magnetic, and electrical properties, **138**, 226

La<sub>0.2</sub>Ca<sub>0.8</sub>MnO<sub>3</sub>, structural and morphological changes associated with charge ordering, 140, 331

La<sub>1-x</sub>Ca<sub>x</sub>MnO<sub>3</sub>, structure, stoichiometry, and phase purity, 140, 320
LiI<sub>3</sub>Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> layered cuprate, synthesis and characterization, 141, 452

 $Sr_{2-x}Ca_xCuO_2F_{2+\delta}$  superconductors, synthetic pathways and associated structural rearrangements, 135, 17

substitution for Eu in Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub>, effects on electronic and magnetic properties, 141, 546

substitution for Na<sup>+</sup> in Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, associated transition from garnet to alluaudite structure, **137**, 112

Calorimetry

differential scanning, see Differential scanning calorimetry

lanthanide aluminum oxide and lanthanide gallium oxide perovskites and garnets, stability study, **141**, 424

Ru-Y system, 138, 302

Carbon

alkaline earth carbonates, thermal decomposition, modeling based on lattice energy changes, 137, 332

anhydrous bisoctyltrimethylammonium dichromate, crystal structure, 139, 310

 $B_4C-Me_x^{IV-VI}B_y$  (Me = Ti, V, Cr, W), activated sintered materials, structural and mechanical properties. 137, 1

C<sub>60</sub>, packing models of high-pressure polymeric phases, **141**, 164

(1:1)  $Cd_3^{II}[(Tr^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O$  complexes (Tr = Co, Fe), structural and spectral studies, **140**, 140

[(CH<sub>3</sub>)<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O]Ag<sub>4</sub>I<sub>5</sub>, silver ion distribution and flow in, cooperative disorder model, **140**, 1

(C<sub>4</sub>H<sub>12</sub>N<sub>2</sub>)<sub>2</sub>[Fe<sub>6</sub>(HPO<sub>4</sub>)<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>2</sub>] · H<sub>2</sub>O templated by piperazine, synthesis and characterization, **139**, 326

[(CH $_3$ NH $_3$ )<sub>1.03</sub>K<sub>2.97</sub>]Sb<sub>12</sub>S<sub>20</sub>·1.34H $_2$ O, hydrothermal synthesis and crystal structure, **140**, 387

 $C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O$ , crystal structure and thermal behavior, **141**, 343

C<sub>6</sub>H<sub>18</sub>N<sub>3</sub><sup>2+</sup>·2HPO<sub>4</sub>-·4H<sub>2</sub>O, crystal structure and thermal behavior, 141, 343

Co<sub>0.33</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, 138, 250

Cu<sub>2</sub><sup>I</sup>Fe<sup>II</sup>(CN)<sub>6</sub> and Cu<sub>3</sub><sup>I</sup>[Fe<sup>II</sup>(CN)<sub>6</sub>]<sub>2</sub>, mechanisms of Cs sorption on, relationship to crystal structure, **141**, 475

 $Cu_{0.6}[Ta_2S_2C]$ , combustion synthesis, **138**, 250

1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and physical properties, 136, 93

diglycine hydrogen selenite, crystal structure, vibrational spectra, and DSC measurement, **140**, 71

Er<sub>2</sub>Ti<sub>4</sub>O<sub>2</sub>(OC<sub>2</sub>H<sub>5</sub>)<sub>18</sub>(HOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, synthesis, characterization, and structure, **135**, 149

ethylenediamine-templated 1-D  $[enH_2][Zr(HPO_4)_3]$  and 2-D  $[enH_2]_{0.5}[Zr(PO_4)(HPO_4)]$ , crystal structures, **140**, 46

ethylenediamine-templated zinc arsenate and aluminum cobalt phosphate, synthesis and zeolite-type structures, **136**, 210

 $Fe_{0.33}[Ta_2S_2C]$ , combustion synthesis, 138, 250

(H<sub>2</sub>O)[V<sub>2</sub>O<sub>2</sub>(OH){O<sub>3</sub>P(CH<sub>2</sub>)<sub>2</sub>PO<sub>3</sub>}], hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89

K<sub>4</sub>Zr<sub>6</sub>Br<sub>18</sub>C, structure, **139**, 85

Mo<sub>2</sub>C 14 nm in average size supported on high specific surface area carbon material, synthesis, **141**, 114

monoglycine-selenious acid crystals, vibrational spectra and DSC measurement, 140, 71

 $Mo_2O_5(OCH_3)_2$  and  $Mo_2O_5(OCH_3)_2 \cdot 2CH_3OH,$  structural analysis, 136, 247

nanotubes, selective deposition of  $UCl_4$  and  $(KCl)_x(UCl_4)_y$  in, using eutectic and noneutectic mixtures of  $UCl_4$  with KCl, 140,

 $[N_2C_3H_5][AlP_2O_8H_2\cdot 2H_2O]$  and  $2[N_2C_3H_5][Al_3P_4O_{16}H]$ , synthesis and structure, letter to editor, 136, 141

 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$ , connected through hydrogen bonding, synthesis and structure, **139**, 207

[NH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>NH<sub>3</sub>][Ga(PO<sub>4</sub>)(PO<sub>3</sub>OH)], synthesis and characterization, 136, 227

 $[NH_{3}(CH_{2})_{8}NH_{3}]_{3}[V_{15}O_{36}(Cl)](NH_{3})_{6}(H_{2}O)_{3},$  synthesis and structure,  $136,\ 298$ 

Ni<sub>0.25</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250

 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$   $nH_2O$  thin film, hydrothermal synthesis, 141, 229

ScAl<sub>3</sub>C<sub>3</sub>, crystal structure, **140**, 396

(SeO<sub>2</sub> + Na<sub>2</sub>CO<sub>3</sub>) mixture, mechanochemical activation for synthesis of Na<sub>2</sub>SeO<sub>3</sub> in vibrational mill, **135**, 256

 $R_3Si_2C_2$  (R = Y,La-Nd,Sm,Gd-Tm), magnetic and electrical properties, 138, 201

 $[Sn_2(PO_4)_2]^2^-[C_2N_2H_{10}]^{2+}\cdot H_2O,$  synthesis and crystal structure, 140, 435

Sn<sub>2</sub>(PO<sub>4</sub>)[C<sub>2</sub>O<sub>4</sub>]<sub>0.5</sub> containing one-dimensional tin phosphate chains, synthesis and structure, **139**, 200

Ta<sub>2</sub>S<sub>2</sub>C, combustion synthesis, **138**, 250

Ti<sub>2</sub>SC, combustion synthesis, 138, 250

Ti<sub>0.3</sub> [Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250

Tl<sub>2</sub>(MoO<sub>3</sub>)<sub>3</sub>PO<sub>3</sub>CH<sub>3</sub>, synthesis, structure, and properties, **138**, 365

transition metal carbosulfides, combustion synthesis, 138, 250

UAl<sub>3</sub>C<sub>3</sub>, crystal structure, **140**, 396

Zn(O<sub>3</sub>PC<sub>6</sub>H<sub>5</sub>)·H<sub>2</sub>O, thermal behavior, 140, 62

Zr<sub>3</sub>Al<sub>3</sub>C<sub>5</sub>, crystal structure, 140, 396

#### Cathodes

fuel-cell, lanthanun strontium manganate(III)(IV) materials for, oxidation kinetics, *in situ* powder diffraction studies, **141**, 235

 $\text{Li}_3\text{Fe}_2(XO_4)_3$  (X = P,As) materials for rechargeable lithium batteries, 3D framework structure, 135, 228

Cation order-disorder

crystal chemistry in pseudobrookite-type MgTi<sub>2</sub>O<sub>5</sub>, 138, 238

Cation site splitting

in Lewisite, **141**, 562

Cation transport

in  $\text{Li}_9M_3(P_2O_7)_3(PO_4)_2$  (M = Al,Ga,Cr,Fe), 138, 32

in mixed copper-cobalt spinel ferrite powders, 141, 56

Cell volume

expansions near half filling of O intercalation in ErBa<sub>2</sub>Cu<sub>3</sub>O<sub>6.5</sub>, 135, 307 Ceramics

 ${\rm Bi_2Sr_2Co_{6+\delta}},$  stability, oxygen nonstoichiometry, and transformations, 136. 1

Ga-In-Sn-O, oxygen atomic positions in, determination with direct methods and electron diffraction, letter to editor, **136**, 145

La<sub>1-x</sub>Ba<sub>x</sub>CoO<sub>3</sub>, conductivity and IR absorption, 137, 211

 $\mathrm{Sn^4}^+$ -doped indium oxide and  $\mathrm{In_4Sn_3O_{12}}$ , structural studies, 135, 140  $\mathrm{Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}}$  mixed-conducting materials, structure and property relationships, 141, 576

TINb $XO_6$  (X = W,Mo), structural and dielectric properties, **141**, 50 [( $ZrO_2$ )<sub>0.92</sub>( $Y_2O_3$ )<sub>0.08</sub>]<sub>1-x</sub>( $ZrO_2$ )<sub>1</sub> ( $ZrO_2$ )<sub>2</sub> ( $ZrO_2$ )<sub>1</sub> ( $ZrO_2$ )<sub>2</sub> ( $ZrO_2$ )<sub>2</sub> ( $ZrO_2$ )<sub>3</sub> ( $ZrO_2$ )<sub>4</sub> ( $ZrO_2$ )<sub>4</sub> ( $ZrO_2$ )<sub>5</sub> ( $ZrO_2$ )<sub>6</sub> ( $ZrO_2$ )<sub>7</sub> ( $ZrO_2$ )<sub>7</sub> ( $ZrO_2$ )<sub>7</sub> ( $ZrO_2$ )<sub>8</sub> ( $ZrO_2$ )<sub>9</sub> ( $ZrO_2$ ) (ZrO

## Cerium

Ce<sup>4+</sup>, doping of Na<sub>2</sub>SO<sub>4</sub>, effect on electrical conductivity, **138**, 369 Ce–Al–(Si,Ge) systems, phase equilibria and physical properties, **137**, 191

Ce(ClO<sub>4</sub>)<sub>3</sub>, crystalline and molecular structures, **139**, 259

Ce–Mo ultrafine particles, preparation and characterization, **140**, 354  $Ce_{1-x}Nd_xTiO_3$  ( $0 \le x \le 1$ ), magnetic studies, letter to editor, **137**, 181

Ce<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201

CePtAl, magnetic structure, 140, 233

 $CeTaO_{4+\delta}$  system, reversible oxidation/reduction in, TEM and XRD study, **140**, 20

 $CeZrO_4$  powders, oxygen release behavior and appearance of compounds  $\kappa$  and  $t^*$ , 138, 47

 $CsCe_3Te_8$ , flat Te nets of, site occupancy wave and infinite zigzag  $(Te_2^2)_n$  chains in, 135, 111

 $Cu_xCe_{1-x}O_{2-y}$  nanocrystals, emf measurements, **140**, 295

 $KCe^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf$ ), synthesis and crystal structure, 139,

RbCe<sub>3</sub>Te<sub>8</sub>, flat Te nets of, site occupancy wave and infinite zigzag  $(\text{Te}_2^{2-})_n$  chains in, 135, 111

#### Cesium

CsCe<sub>3</sub>Te<sub>8</sub>, flat Te nets of, site occupancy wave and infinite zigzag  $(Te_2^{2-})_n$  chains in, 135, 111

CsCl/TmCl<sub>3</sub>, phase diagrams and thermodynamics, 135, 127

Cs<sub>3</sub>(HSeO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>PO<sub>4</sub>), synthesis and crystal structure, **141**, 317

Cs<sub>5</sub>(HSeO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, synthesis and crystal structure, **141**, 317

Cs<sub>5</sub>(HSO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, solid acid with unique hydrogen bond network, X-ray diffraction study, **140**, 251

 $\beta$ -Cs<sub>3</sub>(HSO<sub>4</sub>)<sub>2</sub>[H<sub>2-x</sub>(P<sub>1-x</sub>,S<sub>x</sub>)O<sub>4</sub>] ( $x \sim 0.5$ ) superprotonic conductor, structure and vibrational spectrum, **139**, 373

CsLiSO<sub>4</sub>, ABW-type, phase transition in, symmetry analysis and atomic distortions, 138, 267

CsMnHP<sub>3</sub>O<sub>10</sub>, magnetic structure and properties, 141, 160

Cs/Na ion exchange on hydrated molybdenum bronze and synthesis of cesium molybdenum bronze at low temperature, 137, 12

CsNb<sub>4</sub>WO<sub>9</sub>(PO<sub>4</sub>)<sub>3</sub>, synthesis and intersecting tunnel structure related to ReO<sub>3</sub>, **136**, 305

 $Cs_2PdSe_8$ , synthesis and open framework structure with double helical assemblies of  $[Pd(Se_4)_2]^{2-}$ , letter to editor, **140**, 149

 $Cs_2MP_2Se_6$  (M = Pd,Zn,Cd,Hg), synthesis, structure, and optical and thermal properties, 138, 321

 $Cs_4(SeO_4)(HSeO_4)_2(H_3PO_4)$ , synthesis and crystal structure, 141, 317

Cs<sub>2</sub>Sn<sub>4</sub>S<sub>9</sub> layered compounds, flux synthesis and characterization, 141,

Cs<sub>5</sub>VW<sub>4</sub>O<sub>9</sub>VO<sub>4</sub>(PO<sub>4</sub>)<sub>4</sub>, air synthesis and intersection tunnnels, **141**, 155 Cs<sub>2</sub>YbNb<sub>6</sub>Br<sub>18</sub>, twinning and atomic structure of twin interface, **141**, 140

sorption on Cu<sup>II</sup>Fe<sup>II</sup>(CN)<sub>6</sub> and Cu<sup>II</sup><sub>3</sub>[Fe<sup>II</sup>(CN)<sub>6</sub>]<sub>2</sub>, mechanisms, relationship to crystal structure, **141**, 475

## Chalcogenides

copper- and silver-based, sonochemical synthesis, 138, 131

misfit layer, poly(ethylene oxide) nanocomposites of, synthesis and characterization, **141**, 323

## Charge compensation

in Gd-doped CaTiO<sub>3</sub>, **124**, 77; comment, **137**, 355; reply, **137**, 357 Charge density wave properties

 $Ag_{0.7}Mo_3O_7(PO_4)$  bronze built up from  $ReO_3$  -type slabs,  $\textbf{140},\ 128$  Charge-ordered states

in  $Ln_{0.5}A_{0.5}$ MnO<sub>3</sub> (Ln = Nd,Gd,Y; A = Ca,Sr), distinction based on chemical melting, 137, 365

## Charge ordering

in  $La_{0.2}Ca_{0.8}MnO_3$ , associated structural and morphological changes, 140, 331

Charge transfer $-T_c$  relationship

in superconducting intercalates IBi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>y</sub>, **138**, 66

Chemical bath deposition

Bi<sub>2</sub>S<sub>3</sub> thin films prepared by, properties, **136**, 167

## Chevrel phase

superconductor La<sub>x</sub>Mo<sub>6</sub>Se<sub>8</sub>

correlation of  $T_c$  and interatomic distances, 136, 151

physical and superconducting properties, **136**, 160

## Chlorine

Ba-Cu-O-Cl system, phase diagram, 141, 378

Ba<sub>2</sub>Cu<sub>3</sub>O<sub>4</sub>Cl<sub>2</sub> and Ba<sub>3</sub>Cu<sub>2</sub>O<sub>4</sub>Cl<sub>2</sub>, magnetic properties, **141**, 378

 $Ba_3Li_2Cl_2(MoO)_4(PO_4)_6$  with intersecting tunnel structure, synthesis, 141, 587

 $\text{Bi}_9(V_{1-x}P_x)_2\text{ClO}_{18}$  series  $(0 \le x \le 1)$ , synthesis, crystal structure, IR characterization, and electrical properties, 136, 34

 $M_2$ BN<sub>2</sub>Cl (M = Ca,Sr), compounds with isolated BN<sub>2</sub><sup>3</sup> units, **135**, 194 CaCl<sub>2</sub>, structure candidates, determination, **136**, 233

Cd<sub>4</sub>P<sub>2</sub>Cl<sub>3</sub>, crystal structure, **137**, 138

Cd<sub>7</sub>P<sub>4</sub>Cl<sub>6</sub>, crystal structure, 137, 138

Ln(ClO<sub>4</sub>)<sub>3</sub> (Ln = La,Ce,Pr,Sm,Eu,Ho,Er,Tm,Lu), crystalline and molecular structures, 139, 259

 $ACI/TmCl_3$  (A = Cs,Rb,K), phase diagrams and thermodynamics, 135, 127

(KCl)<sub>x</sub>(UCl<sub>4</sub>)<sub>y</sub>, deposition inside carbon nanotubes using eutectic and noneutectic mixtures of UCl<sub>4</sub> with KCl, **140**, 83

La<sub>5</sub>Ti<sub>6</sub>S<sub>3</sub>Cl<sub>3</sub>O<sub>15</sub>, synthesis and structural characterization, **139**, 220

 $MgCl_2$ , structure candidates, determination, 136, 233  $AMoOPO_4Cl$  (A = K,Rb), synthesis and layer structure, 137, 214

MNCl (M = Zr, Ti) system, electronic band structure, 138, 207

 $[NH_3(CH_2)_8NH_3]_3[V_{15}O_{36}(Cl)](NH_3)_6(H_2O)_3,$  synthesis and structure, **136**, 298

Rb<sub>2</sub>CdCl<sub>4</sub>, X-ray diffraction and electronic structure, 140, 371

TICl, defects and ionic conductivity at high pressure and temperature, 141, 462

UCl<sub>4</sub>, deposition inside carbon nanotubes using eutectic and noneutectic mixtures of UCl<sub>4</sub> with KCl, **140**, 83

#### Chromium

anhydrous bisoctyltrimethylammonium dichromate, crystal structure, 139, 310

 $B_4C-Cr_x^{IV-VI}B_y$ , activated sintered materials, structural and mechanical properties, 137, 1

(1:1)  $Cd_3^{\parallel}[(Tr^{\parallel}/Cr^{\parallel})(CN)_6]_2 \cdot 15H_2O$  complexes (Tr = Co,Fe), structural and spectral studies, **140**, 140

 $Cr^{3+}$ , substitution for  $Mn^{3+}$  in  $Ln_{0.5}A_{0.5}MnO_3$  (Ln = Nd,Gd,Y; A = Ca,Sr), 137, 365

 $Cr_{2-2x}Mo_xO_3$ , preparation and characterization, 140, 350

 $Cr(SeO_2OH)(Se_2O_5)$ , modifications of, crystal structures and electronic absorption spectra, 135, 70

Cr<sub>2</sub>Sn<sub>3</sub>Se<sub>7</sub>, spin glass-like behavior, 137, 249

CrTa<sub>2</sub>O<sub>6</sub>, trirutile oxide based on Cr<sup>2+</sup>, structure and magnetism, 140, 7

DySr<sub>2</sub>Cu<sub>2.7</sub>Cr<sub>0.3</sub>O<sub>7.2</sub>, crystal structure, **141**, 522

LaCrS<sub>3</sub>, high-pressure synthesis, crystal structure, and electrical and magnetic properties, **139**, 233

 $La_{1-x}Sr_xCrO_3~(x=0\sim0.25)$  perovskites, magnetic and neutron diffraction study, 141, 404

Li<sub>9</sub>Cr<sub>3</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, crystal structure and cation transport properties, 138, 32

 $Ni_y(Cr_{2-2x}In_{2x})_{1-y}S_{3-y}$  spinel, decomposition and X-ray powder diffraction, 136, 193

porous chromia-pillared tetratitanate, synthesis, 136, 320

Clays

fluorohectorite heterostructures, intercalation process in formation of, analysis, 139, 281

## CMR manganites

n=2 layered, Mn<sup>4+</sup> parent compound of, letter to editor, **141**, 599 Cobalt

 $BaCo_{1-x}Cu_xS_{2-y}$  layered sulfide, synthesis, structure, and properties, 138, 111

BICOVOX.15, structure, single-crystal neutron diffraction study at room temperature, **141**, 241

 $Bi_2Sr_2Co_{6+\delta}$  ceramic, stability, oxygen nonstoichiometry, and transformations, 136, 1

 $Ca_xCoO_2$  (0.26  $\leq x \leq$  0.50), topotactic synthesis, **141**, 385

 $\text{Ca}_3\text{Co}_{1-x}B_{1+x}\text{O}_6$  (B=Ir,Ru), one-dimensional oxides, synthesis and magnetic properties, **140**, 14

(1:1)  $Cd_{10}^{11}[(Co^{11}/Cr^{011})(CN)_{6}]_{2}\cdot 15H_{2}O$  complexes, structural and spectral studies, **140**, 140

 $CoAl_2O_4$ , formation from  $\alpha$ - and  $\gamma$ - $Al_2O_3$ -supported oxides, 135, 59

Co<sub>x</sub>Cu<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> spinel powders, cation migration and coercivity in,

 $\text{Co}_{1+x}\text{Ge}$ , nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402

(Co,Ni,Cu)<sub>1+x</sub>(Ge,Sn) B8-type phases, modulated structures and diffuse scattering, computer simulation, **135**, 269

Co(ReO<sub>4</sub>)<sub>2</sub> anhydrous perrhenates, crystal structure, 138, 232

Co<sub>1+x</sub>Sn, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402

Co<sub>0.33</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, 138, 250

α-CoV<sub>3</sub>O<sub>8</sub>, crystal structure and metal distribution, 141, 133

Co(II)(VOPO<sub>4</sub>)<sub>2</sub>·4H<sub>2</sub>O, layered compounds with distinct magnetic linear trimers, **137**, 77

ethylenediamine-templated aluminum cobalt phosphate, synthesis and zeolite-type structure, **136**, 210

La<sub>1-x</sub>Ba<sub>x</sub>CoO<sub>3</sub> ceramics, conductivity and IR absorption, 137, 211

La<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>, crystal structure and magnetic properties, **141**, 411

 $\text{La}_4\text{Co}_3\text{O}_{10+\delta}$  (0.00  $\leq \delta \leq$  0.30), synthesis, crystal structure, and magnetic properties, **141**, 212

La<sub>2</sub>Li<sub>1/2</sub>Co<sub>1/2</sub>O<sub>4</sub>, ordered K<sub>2</sub>NiF<sub>4</sub> structure and bonding properties of MO<sub>6</sub> polyhedra in related compounds, **138**, 18

 $LaNi_{1-x}Co_xO_{2.5+\delta}$ , vacancy-ordered phase, synthesis and crystal structure, **135**, 103

 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$  (0.5  $\leq x \leq$  0.9) perovskite, synthesis and properties, 139, 388

 $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4$  (0.25  $\leq x \leq$  1.10), polaronic conduction below room temperature, **139**, 176

LiCoO-

low-temperature samples and acid-delithiated products, structural features, 140, 116

single crystals, synthesis and structure refinement, letter to editor, **141**, 298

Li<sub>x</sub>Ni<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> system, structural, electrochemical, and physical properties, **136**, 8

Nd<sub>2</sub>O<sub>3</sub>-Co-Co<sub>2</sub>O<sub>3</sub> system, thermogravimetric study at 1100 and 1150°C, **137**, 255

Sr<sub>39</sub>Co<sub>12</sub>N<sub>31</sub>, synthesis, structure, and magnetic properties, **141**, 1

 $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$  mixed-conducting materials, structure and property relationships, **141**, 576

## Coercivity

in mixed copper-cobalt spinel ferrite powders, 141, 56

Colossal magnetoresistance manganites

n = 2 layered, Mn<sup>4+</sup> parent compound of, letter to editor, **141**, 599

Combustion synthesis

transition metal carbosulfides, 138, 250

Composite microporous compounds

MIL-5, hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89

Computer simulation

modulated structures and diffuse scattering in B8-type (Co,Ni,Cu)<sub>1+x</sub> (Ge,Sn) phases, 135, 269

sinusoidal diffuse scattering loci in nonstoichiometric B8-type alloy phases  $A_{1+x}B$  ( $A={\rm Co,Ni};\ B={\rm Ge,Sn}$ ), 140, 402

Conductivity, see also Electrical conductivity; Ionic conductivity

H<sub>2</sub>O-Na<sub>2</sub>SO<sub>4</sub>-Na<sub>2</sub>HPO<sub>4</sub> system isotherms, **140**, 316

Conoscopy

(1:1)  $Cd_{3}^{II}[(Tr^{II}/Cr^{III})(CN)_{6}]_{2} \cdot 15H_{2}O$  complexes (Tr = Co,Fe), 140, 140 Controlled transformation Rate Thermal Analysis

gypsum dehydration, 139, 37

Convergent beam electron diffraction

 $Ga_{3-x}In_{5+x}Sn_2O_{16}$ , 140, 242

Cooperative disorder model

silver ion distribution and flow in one-dimensional ionic conductor  $[(CH_3)_2N(CH_2CH_2)_2O]Ag_4I_5$ , 140, 1

Coordination polymers

[Zn(4,4'-bipy)(H<sub>2</sub>O)(SO<sub>4</sub>)] · 0.5H<sub>2</sub>O, with interwoven double-layer structure, synthesis and characterization, **138**, 361

Coppei

 $BaCo_{1-x}Cu_xS_{2-y}$  layered sulfide, synthesis, structure, and properties, 138, 111

```
Ba<sub>6</sub>Cu<sub>12</sub>Fe<sub>13</sub>S<sub>27</sub>, synthesis and crystal structure, 128, 62; comment, 137,
                                                                                                               cation order-disorder in pseudobrookite-type MgTi<sub>2</sub>O<sub>5</sub>, 138, 238
         353; reply, 137, 354
                                                                                                               KMgPO<sub>4</sub>, 136, 175
   REBa_2Cu_3O_y (RE = Y,Eu,La), shock synthesis, effect of ionic radius
                                                                                                               (K_xNa_{1-x})MgF_3 perovskites in P-T-X space, 141, 121
         difference of RE^{3+} and Ba^{2+}, 136, 74
                                                                                                               La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3 system, 140, 377
   Ba-Cu-O-Cl system, phase diagram, 141, 378
                                                                                                               Nd_6Ni_{2-x}Si_3 and Nd_{42}Ni_{22-x}Si_{31}, 137, 302
   Ba<sub>2</sub>Cu<sub>3</sub>O<sub>4</sub>Cl<sub>2</sub> and Ba<sub>3</sub>Cu<sub>2</sub>O<sub>4</sub>Cl<sub>2</sub>, magnetic properties, 141, 378
                                                                                                            Crystal field analysis
                                                                                                               LiYO<sub>2</sub> doped with Eu<sup>3+</sup>, refinement of monoclinic and tetragonal struc-
  Ln_2Ba_2Cu_2Ti_2O_{11-\delta} (Ln = La,Nd,Eu,Tb), sol-gel synthesis and simul-
         taneous oxidation, 138, 141
                                                                                                                     tures, 137, 242
   BiCu<sub>2</sub>VO<sub>6</sub>, synthesis and structure, 141, 149
                                                                                                            Crystal growth
   BiO<sub>1.5</sub>-YbO<sub>1.5</sub>-CuO system, phase relations, 139, 398
                                                                                                               NaLa<sub>9</sub>(GeO<sub>4</sub>)<sub>6</sub>O<sub>2</sub> apatite single crystals, 139, 304
   Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>, transformation to Bi<sub>2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub>, 139, 1
                                                                                                            Crystal structure
   Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, heavily Pb-substituted single crystals, two-phase
                                                                                                               Ag<sub>0.7</sub>Mo<sub>3</sub>O<sub>7</sub>(PO<sub>4</sub>) bronze built up from ReO<sub>3</sub>-type slabs, 140, 128
                                                                                                               AgXPO_4 (X = Be,Zn), 141, 177
         microstructures generating efficient pinning centers, 138, 98
   Co<sub>x</sub>Cu<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> spinel powders, cation migration and coercivity in,
                                                                                                               Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> nanocrystals, 141, 70
         141, 56
                                                                                                               anhydrous bisoctyltrimethylammonium dichromate, 139, 310
  (Co,Ni,Cu)<sub>1+x</sub>(Ge,Sn) B8-type phases, modulated structures and diffuse
                                                                                                               AuTa<sub>5</sub>S, 139, 45
                                                                                                               Ba<sub>3</sub>AlO<sub>4</sub>H, 141, 570
         scattering, computer simulation, 135, 269
   Cu2+ in sol-gel-derived TiO2, TPR, ESR, and XPS study, 138, 1
                                                                                                               Ba<sub>2</sub>BiGa<sub>11</sub>O<sub>20</sub>, 138, 313
  CuAl_2O_4, formation from \alpha- and \gamma-Al_2O_3-supported oxides, 135, 59
                                                                                                               BaBPO<sub>5</sub>, 135, 43
  CuAl<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(F,OH)<sub>2</sub>, hydrothermal synthesis, crystal structure, and
                                                                                                               Ba<sub>6</sub>Cu<sub>12</sub>Fe<sub>13</sub>S<sub>27</sub>, 128, 62; comment, 137, 353; reply, 137, 354
         properties, 141, 527
                                                                                                               BaGa<sub>12</sub>O<sub>19</sub>, magnetoplumbite-type compound, 136, 120
                                                                                                               BaHfN<sub>2</sub>, 137, 62
  Cu_xCe_{1-x}O_{2-y} nanocrystals, emf measurements, 140, 295
  Cu<sub>2</sub><sup>II</sup>Fe<sup>II</sup>(CN)<sub>6</sub> and Cu<sub>3</sub><sup>II</sup>[Fe<sup>III</sup>(CN)<sub>6</sub>]<sub>2</sub>, mechanisms of Cs sorption on,
                                                                                                               Ba<sub>2</sub>Mg<sub>6</sub>Al<sub>28</sub>O<sub>50</sub>, 136, 258
         relationship to crystal structure, 141, 475
                                                                                                               Ba-Pt-O system (\frac{4}{3} < Y = \text{Ba/Pt} < \frac{5}{2}), 140, 194
  CuInP<sub>2</sub>S<sub>6</sub>, soft-chemistry forms, 141, 290
                                                                                                               BaScO<sub>2</sub>F perovskite, 139, 422
   A_4CuIr<sub>2</sub>O<sub>9</sub> (A = Sr,Ba), commensurate and incommensurate phases,
                                                                                                               Ba_5Ta_4O_{15}-MZrO_3 (M = Ba,Sr) hexagonal perovskites, 141, 492
                                                                                                               BaThN<sub>2</sub>, 138, 297
         136, 103
  Cu<sub>1.96</sub>S, Cu<sub>3</sub>Se<sub>2</sub>, and αCu<sub>2</sub>Se chalcogenides, sonochemical synthesis,
                                                                                                               BaV_6O_{16} \cdot nH_2O, 140, 219
         138, 131
                                                                                                               Ba<sub>3</sub>V<sub>2</sub>O<sub>3</sub>(PO<sub>4</sub>)<sub>3</sub>, chain-like structure, 135, 302
  Cu<sub>2</sub>SnS<sub>3</sub>, structure refinement, 139, 144
                                                                                                               Ba<sub>2</sub>(VO<sub>2</sub>)(PO<sub>4</sub>)(HPO<sub>4</sub>)·H<sub>2</sub>O with trigonal bipyramidal VO<sub>5</sub> groups,
  Cu<sub>4</sub>Sn<sub>7</sub>S<sub>16</sub>, synthesis, electrical conductivity, and crystal structure, 139,
                                                                                                                     140, 272
                                                                                                               Bi(Bi_{12-x}Te_xO_{14})Mo_{4-x}V_{1+x}O_{20} \ (0 \le x \le 2.5) solid solution, evolu-
  Cu<sub>0.6</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, 138, 250
                                                                                                                     tion, 139, 185
   Cu<sub>2</sub>Th<sub>4</sub>(MoO<sub>4</sub>)<sub>9</sub>, structural skeleton, 136, 199
                                                                                                               BiCa<sub>2</sub>VO<sub>6</sub>, 137, 143
   DySr_2Cu_{2.7}Cr_{0.3}O_{7.2} and DySr_2Cu_{2.7}Mo_{0.3}O_{7.2}, crystal structures,
                                                                                                               BICOVOX.15, single-crystal neutron diffraction study at room temper-
         141, 522
                                                                                                                      ature. 141, 241
   ErBa<sub>2</sub>Cu<sub>3</sub>O<sub>6,5</sub>, half filling of O intercalation in, new orthorhombicity
                                                                                                               BiCu<sub>2</sub>VO<sub>6</sub>, 141, 149
         type and cell volume expansions near, 135, 307
                                                                                                               RBi_2O_4NO_3 (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), 139, 321
   Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub>, electronic and magnetic properties, effects of
                                                                                                               Bi<sub>6.67</sub>(PO<sub>4</sub>)<sub>4</sub>O<sub>4</sub>, 139, 274
         cationic substitution, 141, 546
                                                                                                               Bi_9(V_{1-x}P_x)_2ClO_{18} series (0 \le x \le 1), 136, 34
                                                                                                               M_2BN<sub>2</sub>X (M = Ca,Sr; X = F,Cl), compounds with isolated BN<sub>2</sub><sup>3-</sup> units,
  IBi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>v</sub>, superconducting intercalates, charge transfer–T<sub>c</sub> rela-
         tionship, 138, 66
  La<sub>2</sub>Li<sub>1/2</sub>Cu<sub>1/2</sub>O<sub>4</sub>, ordered K<sub>2</sub>NiF<sub>4</sub> structure and bonding properties of
                                                                                                               Ln_3(BO_3)_2F_3 (Ln = Sm_2Eu_3Gd), ab initio determination, 139, 52
         MO<sub>6</sub> polyhedra in related compounds, 138, 18
                                                                                                               Ca_3Co_{1+x}B_{1-x}O_6 (B = Ir,Ru) one-dimensional oxides, 140, 14
  La_{2-x}Nd_xCuO_4 system, structural transitions, 140, 345
                                                                                                              (Ca,Gd)<sub>2</sub>(Al,Ti)O<sub>4</sub>, 139, 204
  LaNi<sub>0.95</sub>Cu<sub>0.05</sub>O<sub>3</sub> perovskites, metal-insulator transitions in, 136, 313
                                                                                                               \alpha-Ca<sub>3</sub>N<sub>2</sub>, 137, 33
  LiI<sub>3</sub>Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> layered cuprate, synthesis and characterization,
                                                                                                               Ca_{1-x}Sr_xNbO_3 (0 \leq x \leq 1) perovskite-type phases, 141, 514
         141, 452
                                                                                                               CaTi<sub>1-2x</sub>Fe<sub>x</sub>Nb<sub>x</sub>O<sub>3</sub> perovskite series, 138, 272
  metal formation from hemioxides by low-energy mechanochemistry,
                                                                                                               CaTi<sub>2</sub>O<sub>4</sub>, 141, 338
         136, 51
                                                                                                               CaTiO<sub>3</sub>/SrTiO<sub>3</sub> system, 139, 238
  Nd<sub>4</sub>Cu<sub>2</sub>O<sub>7</sub>, cooperatively distorted T' type structure, 136, 137
                                                                                                               (1:1) Cd_3^{II}[(Tr^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O complexes (Tr = Co, Fe), 140, 140
  (Ni<sub>6-x</sub>Cu<sub>x</sub>)MnO<sub>8</sub>, crystal structure and magnetic properties, 135, 322
                                                                                                               Cd<sub>4</sub>P<sub>2</sub>Cl<sub>3</sub>, 137, 138
  Sr_{2-x}A_xCuO_2F_{2+\delta} (A = Ca,Ba) superconductors, synthetic pathways
                                                                                                               Cd<sub>7</sub>P<sub>4</sub>Cl<sub>6</sub>, 137, 138
         and associated structural rearrangements, 135, 17
                                                                                                               CeTaO<sub>4+\delta</sub> system, TEM and XRD study, 140, 20
  Y_2Ba_4Cu_7O_{15-\delta}, TEM and NQR studies, 139, 266
                                                                                                               (C<sub>4</sub>H<sub>12</sub>N<sub>2</sub>)<sub>2</sub>[Fe<sub>6</sub>(HPO<sub>4</sub>)<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>2</sub>]⋅H<sub>2</sub>O templated by piperazine,
Coulometric titration
                                                                                                                      139, 326
                                                                                                               [(CH_3NH_3)_{1.03}K_{2.97}]Sb_{12}S_{20} \cdot 1.34H_2O, 140, 387
  measurement of nonstoichiometry of (Mg_xFe_{1-x})_{3-\delta}O_4, 139, 128
Cristobalite
                                                                                                               C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O, 141, 343
  related framework topology, in LiZnPO<sub>4</sub> polymorph, 138, 126
                                                                                                               C_6H_{18}N_3^{2+} \cdot 2HPO_4^- \cdot 4H_2O, 141, 343
                                                                                                               Ln(ClO_4)_3 (Ln = La, Ce, Pr, Sm, Eu, Ho, Er, Tm, Lu), 139, 259
   related oxide structures, review, 141, 29
Crystal chemistry
                                                                                                               \alpha-CoV<sub>3</sub>O<sub>8</sub>, 141, 133
   AgXPO_4 (X = Be,Zn), 141, 177
                                                                                                               Cr(SeO<sub>2</sub>OH)(Se<sub>2</sub>O<sub>5</sub>), 135, 70
                                                                                                               CrTa<sub>2</sub>O<sub>6</sub> trirutile oxide based on Cr<sup>2+</sup>, 140, 7
   Bi_{3.6}Sr_{12.4}Mn_8O_{28+\delta} with tubular structure, 138, 278
  CaFe_{1/2}Nb_{1/2}O_3, 138, 272
                                                                                                               Cs<sub>3</sub>(HSeO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>PO<sub>4</sub>), 141, 317
```

```
Cs<sub>5</sub>(HSeO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, 141, 317
\beta-Cs<sub>3</sub>(HSO<sub>4</sub>)<sub>2</sub>[H<sub>2-x</sub>(P<sub>1-x</sub>,S<sub>x</sub>)O<sub>4</sub>] (x ~ 0.5) superprotonic conductor,
       139, 373
Cs<sub>2</sub>PdSe<sub>8</sub>, open framework structure with double helical assemblies of
      [Pd(Se_4)_2]^{2-}, letter to editor, 140, 149
Cs_4(SeO_4)(HSeO_4)_2(H_3PO_4), 141, 317
CuAl<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(F,OH)<sub>2</sub>, 141, 527
Cu<sub>2</sub><sup>II</sup>Fe<sup>II</sup>(CN)<sub>6</sub> and Cu<sub>3</sub><sup>II</sup>[Fe<sup>III</sup>(CN)<sub>6</sub>]<sub>2</sub>, relationship to mechanisms of Cs
      sorption, 141, 475
Cu<sub>2</sub>SnS<sub>3</sub>, refinement, 139, 144
Cu<sub>4</sub>Sn<sub>7</sub>S<sub>16</sub>, 139, 144
1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers
      and 4-ring ladders, 136, 93
diglycine hydrogen selenite, 140, 71
DySr<sub>2</sub>Cu<sub>2.7</sub>Cr<sub>0.3</sub>O<sub>7.2</sub> and DySr<sub>2</sub>Cu<sub>2.7</sub>Mo<sub>0.3</sub>O<sub>7.2</sub>, 141, 522
Er<sub>5</sub>O(OPr<sup>i</sup>)<sub>13</sub>, 141, 168
Er_{0.85}Te \ and \ Er_{17.3}Te_{24}I_8, \ \textbf{139,} \ 57
Er_2Ti_4O_2(OC_2H_5)_{18}(HOC_2H_5)_2, 135, 149
ethylenediamine-templated 1-D [enH<sub>2</sub>][Zr(HPO<sub>4</sub>)<sub>3</sub>]
      [enH_2]_{0.5}[Zr(PO_4)(HPO_4)], 140, 46
ethylenediamine-templated zeolite-type structures in zinc arsenate and
      cobalt phosphate systems, 136, 210
Eu_{2-x}Sr_xNiO_{4+\delta}, 141, 99
Fe<sub>6</sub>Ge<sub>5</sub>, relationship to B8-type structures, 141, 199
ε-Fe<sub>2</sub>O<sub>3</sub>, 139, 93
Fe<sub>2.5</sub>Ti<sub>0.5</sub>O<sub>4</sub> nanocrystals synthesized by soft chemistry and high-energy
      ball milling, 139, 66
Ga_{3-x}In_{5+x}Sn_2O_{16}, 140, 242
GdAgGe, GdAuGe, GdAu_{0.44(1)}In_{1.56(1)}, and GdAuIn antiferromagnets,
      141, 352
In<sub>2</sub>S<sub>3</sub> thin films, study by diffraction of synchrotron radiation, 137, 6
In<sub>4</sub>Sn<sub>3</sub>O<sub>12</sub>, 135, 140
A_4A'\operatorname{Ir}_2\operatorname{O}_9 (A = \operatorname{Sr}, \operatorname{Ba}; A' = \operatorname{Cu}, \operatorname{Zn}), commensurate and incommensur-
      ate phases, 136, 103
K<sub>4</sub>Bi<sub>2</sub>O<sub>5</sub>, 139, 342
KLn^{III}M_2^{IV}F_{12} (M^{IV} = Tb,Zr,Hf; Ln^{III} = Ce-Lu), 139, 248
KH<sub>2</sub>PO<sub>4</sub>, 141, 486
K_4In_2(PSe_5)_2(P_2Se_6), one-dimensional compounds, 136, 79
K_{1-x}Li_xMnF_3 single crystal in range 100–298 K, 137, 71
KMgPO<sub>4</sub>, 136, 175
KPb<sub>4</sub>(VO<sub>4</sub>)<sub>3</sub>, anion-deficient apatite structure, 141, 373
KTb^{III}Tb_2^{IV}F_{12}, 139, 248
K<sub>4</sub>Zr<sub>6</sub>Br<sub>18</sub>C, 139, 85
La<sub>0.2</sub>Ca<sub>0.8</sub>MnO<sub>3</sub>, changes associated with charge ordering, 140, 331
La_{1-x}Ca_xMnO_3, 140, 320
La<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>, 141, 411
\text{La}_4\text{Co}_3\text{O}_{10+\delta} (0.00 \leq \delta \leq 0.30), 141, 212
LaCrS<sub>3</sub> prepared by high-pressure synthesis, 139, 233
La<sub>x</sub>Mo<sub>6</sub>Se<sub>8</sub> Chevrel-phase superconductor, single-crystal studies, 136,
La<sub>2-x</sub>Nd<sub>x</sub>CuO<sub>4</sub> system, transitions, 140, 345
\text{LaNi}_{1-x}M_x\text{O}_{2.5+\delta} (M = Mn,Fe,Co) vacancy-ordered phase, 135, 103
La<sub>5</sub>Ti<sub>6</sub>S<sub>3</sub>Cl<sub>3</sub>O<sub>15</sub>, 139, 220
La<sub>8</sub>Ti<sub>10</sub>S<sub>24</sub>O<sub>4</sub>, 136, 46
Lewisite: mixed valency, cation site splitting, and symmetry reduction,
      141, 562
LiCoO<sub>2</sub>
   low-temperature samples and acid-delithiated products, 140, 116
   single crystals, refinement, letter to editor, 141, 298
Li<sub>1-x</sub>H<sub>x</sub>IO<sub>3</sub>-type complex crystals, relationship to optical properties,
       135, 121
```

LiI<sub>3</sub>Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> layered cuprate, **141**, 452

Li-Mn-O spinels, **139**, 290

LiNi(AsO<sub>4</sub>), 141, 508

```
\text{Li}_9M_3(\text{P}_2\text{O}_7)_3(\text{PO}_4)_2 (M = Al,Ga,Cr,Fe), 138, 32
(\text{Li}_x V_{1-x})_3 BO_5 (x \simeq 0.3) disordered S = 1 system, 141, 418
\delta \text{Li}_x \text{V}_2 \text{O}_5, comparison to MgV<sub>2</sub>O<sub>5</sub>, 136, 56
Li<sub>0.84</sub>W<sub>1.16</sub>N<sub>2</sub> prepared by ammonolysis of LiF-WO<sub>3</sub>, 138, 154
LiYO<sub>2</sub> doped with Eu<sup>3+</sup>, monoclinic and tetragonal, refinement, 137,
LiZnPO<sub>4</sub>, polymorph with cristobalite-type framework topology, 138,
       126
Mg<sub>5</sub>Nb<sub>4</sub>O<sub>15</sub> and Mg<sub>5</sub>Ta<sub>4</sub>O<sub>15</sub>, refinement by Rietveld analysis of neu-
       tron powder diffraction data, 137, 359
MgV_2O_5, comparison to \delta Li_xV_2O_5, 136, 56
Mn(ReO<sub>4</sub>)<sub>2</sub>·2H<sub>2</sub>O, 138, 232
Mn<sub>11</sub>Ta<sub>4</sub>O<sub>21</sub>, and refinement of Mn<sub>4</sub>Ta<sub>2</sub>O<sub>9</sub> structure, 137, 276
Mn_{0.15}V_{0.3}Mo_{0.7}O_3, 138, 347
AMoOPO<sub>4</sub>Cl (A = K,Rb), 137, 214
NaFe_{3.67}(PO_4)_3, 139, 152
Na<sub>2</sub>Ge<sub>4</sub>O<sub>9</sub>, 140, 175
NaLa<sub>9</sub>(GeO<sub>4</sub>)<sub>6</sub>O<sub>2</sub> apatite, 139, 304
Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3 perovskite series, 138, 307
NaPb<sub>4</sub>(VO<sub>4</sub>)<sub>3</sub>, anion-deficient apatite structure, 141, 373
Na<sub>4</sub>P<sub>2</sub>S<sub>6</sub>·6H<sub>2</sub>O, single-crystal study, 141, 274
Na<sub>3</sub>ScF<sub>6</sub>, single-crystal high-pressure studies, 135, 116
\text{[N$_2$C$_3$H$_5][AlP$_2$O$_8$H$_2$ \cdot 2$H$_2$O]} and 2[N$_2$C$_3$H$_5][Al$_3$P$_4$O$_{16}$H], letter to
       editor, 136, 141
[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O connected through hy-
       drogen bonding, 139, 207
Nd<sub>4</sub>Cu<sub>2</sub>O<sub>7</sub>, cooperatively distorted T' type structure, 136, 137
NdMo<sub>6</sub>O<sub>12</sub>, ordered hollandite-type compound, 136, 87
Nd<sub>4</sub>Ni<sub>3</sub>O<sub>8</sub>, neutron diffraction and TEM studies, 140, 307
Nd_6Ni_{2-x}Si_3 and Nd_{42}Ni_{22-x}Si_{31}, 137, 302
[NH<sub>3</sub>(CH<sub>2</sub>)<sub>8</sub>NH<sub>3</sub>]<sub>3</sub>[V<sub>15</sub>O<sub>36</sub>(Cl)](NH<sub>3</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>3</sub>, 136, 298
NH<sub>4</sub>NbWO<sub>6</sub> defect pyrochlore, 141, 537
NH<sub>4</sub>VP<sub>2</sub>O<sub>7</sub>, 136, 181
(Ni_{6-x}Cu_{x})MnO_{8}, 135, 322
Ni_{1-x}O with dissolved Zr^{4+}, defect clusters and superstructures, 140,
       361
MO_2 (M = Ba,Sr,Ca,Mg,Be), ab initio quantum mechanical study, 140,
       103
Pb_x(PO_2)_4(WO_3)_{2m} (6 \leq m \leq 10) bronze, 139, 362
Pb_2Re_2O_{7-x} pyrochlores, 138, 220
Pb<sup>II</sup>Sn<sup>IV</sup>(PO<sub>4</sub>)<sub>2</sub>, 137, 283
A_2MP_2Se_6 (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), 138, 321
Rb<sub>2</sub>MoO<sub>2</sub>As<sub>2</sub>O<sub>7</sub>, 141, 500
Rb<sub>12</sub>Nb<sub>6</sub>Se<sub>35</sub> polymer with infinite anionic chains built up by Nb<sub>2</sub>Se<sub>11</sub>
       units containing Se<sub>3</sub><sup>4</sup> fragment, 140, 97
Rb<sub>3</sub>Sc<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, determination by synchrotron single crystal methods,
Rb<sub>3</sub>Sn(PSe<sub>5</sub>)(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, 136, 79
M(ReO_4)_2 (M = Mn,Co,Ni,Zn) anhydrous perrhenates, 138, 232
A_3MS_4 (A = Na,Rb; M = Nb,Ta), 139, 404
SbRe<sub>2</sub>O<sub>6</sub> with Re-Re bond, 138, 245
ScAl<sub>3</sub>C<sub>3</sub>, 140, 396
ScNiP, 137, 218
Sm<sub>3</sub>NbSe<sub>3</sub>O<sub>4</sub>, 137, 122
SmTe_{2-x} semiconductor, 140, 300
Sn(ND<sub>3</sub>)<sub>2</sub>F<sub>4</sub>, 138, 350
SnO<sub>2</sub> nanocrystals, X-ray and Raman spectroscopy, 135, 78
[Sn_2(PO_4)_2]^{2-}[C_2N_2H_{10}]^{2+} \cdot H_2O, 140, 435
Sn_2(PO_4)[C_2O_4]_{0.5} containing one-dimensional tin phosphate chains,
A_2Sn<sub>4</sub>S<sub>9</sub> (A = K,Rb,Cs) layered compounds prepared by flux synthesis,
       141, 17
Sr<sub>39</sub>Co<sub>12</sub>N<sub>31</sub>, 141, 1
```

 $Sr_{1-x}La_xMo_5O_8 \ (0 \le x \le 1), 138, 7$ 

Sr<sub>3</sub>Mn<sub>2</sub>O<sub>7</sub>, letter to editor, **141**, 599 Deuterium Sn(ND<sub>3</sub>)<sub>2</sub>F<sub>4</sub>, structure, implications for synthesis of nitride fluorides, Sr<sub>2</sub>NbN<sub>3</sub>, **138**, 297  $Sr_{2-x}Pb_x(VO)(VO_4)_2$  solid solutions, **140**, 417 **138,** 350 Sr<sub>3</sub>MRhO<sub>6</sub>, with K<sub>4</sub>CdCl<sub>6</sub> structure-type Devitrification M = Sm,Eu,Tb,Dy,Ho,Er,Yb, 139, 79AgI:Ag<sub>2</sub>MoO<sub>4</sub> system, 140, 91 M = Y,Sc,In, 139, 416p-Dialkylbenzene-urea  $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O$ , 140, 134 inclusion compounds, order and disorder in, 141, 437 TaReSe<sub>4</sub> layered crystals, electron microscopic and X-ray diffraction Diaminoanthraquinone analysis, 135, 235 substitution pattern, effect on physical properties, 141, 309 Ta<sub>3</sub>SBr<sub>7</sub>, **140**, 226 1,3-Diaminopropane  $ALn_3Te_8$ , site occupancy wave and infinite zigzag  $(Te_2^2)_n$  chains in flat zirconium phosphate fluorides templated with, hydrothermal synthesis Te nets, 135, 111 and crystal structure, 135, 293 Ti<sub>3</sub>O<sub>5</sub>, **136**, 67 1,3-Diammonium-propane zinc hydrogen phosphates Ti(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>), neutron powder data, **140**, 266 with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and TlB<sub>5</sub>O<sub>8</sub>, **136**, 216 physical properties, 136, 93 Tl<sub>2</sub>(MoO<sub>3</sub>)<sub>3</sub>PO<sub>3</sub>CH<sub>3</sub>, **138**, 365 Dielectric properties  $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4 \ (0.25 \le x \le 1.10)$  below room temperature, 139, 176  $TINbXO_6$  (X = W,Mo) ceramics, 141, 50 Tl<sub>8</sub>Nb<sub>27.2</sub>O<sub>72</sub>, TEM and single-crystal X-ray diffraction studies, 135,  $Pb_2MgW_xTe_{(1-x)}O_6$  solid solution, 139, 332  $TlNbXO_6$  (X = W,Mo) ceramics, 141, 50  $Tl_2Ru_2O_{7-\delta}$  pyrochlore synthesized at high pressure, 140, 182 Diethylenetriamine UAl<sub>3</sub>C<sub>3</sub>, **140**, 396 zirconium phosphate fluorides templated with, hydrothermal synthesis U<sub>3</sub>Te<sub>5</sub>, **139**, 356 and crystal structure, 135, 293 VO<sub>2</sub>(A), 141, 594 Differential scanning calorimetry VO<sub>2</sub> polymorph prepared by soft chemical methods, 138, 178 Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub> phase transitions, **135**, 175 Y<sub>4</sub>Al<sub>2</sub>O<sub>9</sub> at high temperature, **141**, 466 diglycine hydrogen selenite crystals, 140, 71 LiYO<sub>2</sub> doped with Eu<sup>3+</sup>, refinement of monoclinic and tetragonal struczirconium phosphate fluorides templated with amines, 135, 293 [Zn(4,4'-bipy)(H<sub>2</sub>O)(SO<sub>4</sub>)] · 0.5H<sub>2</sub>O coordination polymer, interwoven tures, 137, 242 double-layer structure, 138, 361 monoglycine-selenious acid crystals, 140, 71 γ-Zn<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, determination from X-ray powder diffraction data, 140, order-disorder phase transition in bicyclononanone, 136, 16 62  $Pb_2MgW_xTe_{(1-x)}O_6$  solid solution, 139, 332 Differential thermal analysis ZnS, ordering of metal atoms in sphalerite and wurtzite structures, 138, EuI<sub>2</sub>-KI binary system, 136, 134 334 Zr<sub>3</sub>Al<sub>3</sub>C<sub>5</sub>, 140, 396 γ-Fe<sub>2</sub>O<sub>3</sub> nanocrystalline particles, 137, 185 ZrTe<sub>3</sub>, 138, 160 Diffraction anomalous fine structure  $Ba_4(Ba_xPt_{1-x}^{2+})Pt_2^{4+}O_9$  twinned crystal, **140**, 201 Zr<sub>3</sub>Te, 139, 213 Zr<sub>5</sub>Te<sub>4</sub>, 139, 213 Diffuse scattering La<sub>0.2</sub>Ca<sub>0.8</sub>MnO<sub>3</sub>, structural and morphological changes associated with D charge ordering, 140, 331 DAFS, see Diffraction anomalous fine structure sinusoidal, loci in nonstoichiometric B8-type alloy phases  $A_{1+x}B$ Decomposition (A = Co,Ni; B = Ge,Sn), simulation, 140, 402 $\alpha$ -Ca<sub>3</sub>N<sub>2</sub>, **137**, 33 Dispersion Mg<sub>3</sub>N<sub>2</sub>, 137, 33 NaNO<sub>3</sub> on ZrO<sub>2</sub>: effect of supported Na<sup>+</sup> on ZrO<sub>2</sub> texture properties,  $MO_2$  (M = Ba,Sr,Ca,Mg,Be), ab initio quantum mechanical study, 140, Disproportionation spinel-type nickel chromium indium sulfides, 136, 193 in BaBiO<sub>3</sub>, stabilization, contrast with stabilization of spontaneous thermal, see Thermal decomposition polarization of H<sub>2</sub> molecules, 138, 369 Defect chemistry spinel precipitates of Al-doped Ni<sub>1-x</sub>, 140, 38 D3C-THF, cubic/tetragonal phase transition in, optical and X-ray pow-Defect structure der diffraction study, 137, 87  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> doped with Mg<sup>2+</sup>, **140**, 428 Double helical assemblies Nd<sub>4</sub>Ni<sub>3</sub>O<sub>8</sub>, neutron diffraction and TEM studies, **140**, 307  $[Pd(Se_4)_2]^{2-}$  in  $Cs_2PdSe_8$ , letter to editor, **140**, 149  $Ni_{1-x}O$  with dissolved  $Zr^{4+}$ , defect clusters, **140**, 361 Dysprosium Pb<sub>1-x</sub>In<sub>x</sub>Te single crystals, point defect clusters revealed by X-ray dif-DyAlO<sub>3</sub> perovskite, stability, calorimetric study, 141, 424 fuse scattering method, 137, 119 Dy<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424 DyBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+w</sub> triple perovskites, <sup>57</sup>Fe Mössbauer study, **139**, 168 Sr<sub>4</sub>Nb<sub>4</sub>O<sub>14</sub>-Sr<sub>5</sub>Nb<sub>4</sub>O<sub>15</sub>-SrTiO<sub>3</sub> system, microstructures in perovskite-DyBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+x</sub> phases, powder neutron and X-ray diffraction studies, related phases, 135, 260 TaReSe<sub>4</sub> layered crystals, electron microscopic and X-ray diffraction analysis, 135, 235 DyBi<sub>2</sub>O<sub>4</sub>NO<sub>3</sub>, preparation and crystal structure, 139, 321 TlCl, TlBr, and TlI at high pressure and temperature, 141, 462 Dy<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424 Dy<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201 Dehydration gypsum, Controlled transformation Rate Thermal Analysis, 139, 37  $DySr_2Cu_{2.7}Cr_{0.3}O_{7.2} \ \ and \ \ DySr_2Cu_{2.7}Mo_{0.3}O_{7.2}, \ \ crystal \ \ structures,$  $TlB_5O_6(OH)_4 \cdot 2H_2O$ , **136**, 216  $KDy^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf$ ), synthesis and crystal structure, 139, 248 Delithiation LiCoO<sub>2</sub>, products of, structural features, 140, 116 Sr<sub>3</sub>DyRhO<sub>6</sub>, synthesis, characterization, and magnetic properties, 139, 79

Ε PdTeI single crystals, 137, 206 Electrical conductivity ZrTe<sub>3</sub>, 138, 160  $BaCo_{1-x}Cu_xS_{2-y}$  layered sulfide, 138, 111 Electronic properties Bi<sub>2</sub>Te<sub>3</sub> single crystals with incorporated Ag, 140, 29 Cu<sub>4</sub>Sn<sub>7</sub>S<sub>16</sub>, 139, 144  $A_2 \text{Ir}_2 \text{O}_{7-v}$  pyrochlores, **136**, 269  $Fe_8V_{10}W_{16}O_{85}$  low-spin  $d^5$  system, 137, 223  $La_{1-x}Ba_xCoO_3$  ceramics, 137, 211  $A_2 Ru_2 O_{7-\nu}$  pyrochlores, **136**, 269  $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$  system, **140**, 377 Electronic state  $Na_{x-\delta}Fe_xTi_{2-x}O_4$  ( $x = 0.875, 0 \le \delta \le 0.40$ ), 137, 168 Na<sub>2</sub>SO<sub>4</sub>, effect of aliovalent cation doping, 138, 183 NdMo<sub>6</sub>O<sub>12</sub>, ordered hollandite-type compound, **136**, 87 139, 124 Sb<sub>2</sub>Te<sub>3</sub> single crystals with incorporated Ag, 140, 29 Ti<sub>3</sub>O<sub>5</sub>, 136, 67  $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$  materials, **141**, 576 Electronic structure superconductivity, see Superconductivity  $[(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(RuO_2)_x (0 \le x \le 0.1)$  ceramics, 141, 282 La<sub>12</sub>Mn<sub>2</sub>Sb<sub>30</sub> alloy, **139**, 8 Rb<sub>2</sub>CdCl<sub>4</sub>, 140, 371 Electrical properties Bi<sub>2</sub>S<sub>3</sub> thin films prepared by thermal evaporation and chemical bath deposition, 136, 167 mission electron microscopy  $Bi_9(V_{1-x}P_x)_2ClO_{18}$  series  $(0 \le x \le 1)$ , 136, 34 (Ca<sub>1-x</sub>Sr<sub>x</sub>)MnO<sub>3</sub>, relationship to Mn–O–Mn angles, 137, 82 Ce-Al-(Si,Ge) systems, 137, 191 Sr<sub>4</sub>Ni<sub>3</sub>O<sub>9</sub>, 135, 1 In-Bi<sub>2</sub>S<sub>3</sub> annealed thin films, **138**, 290  $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$ , effect of  $Ge^{4+}$ , 140, 431 ate phases, 136, 103  $La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3$  perovskites, 138, 226 LaCrS<sub>3</sub> prepared by high-pressure synthesis, 139, 233  $La_{1-x-y}A_xMnO_{3-\delta}$  (A = Na,K), 137, 19 rotation twins, 135, 235 Electron paramagnetic resonance Li<sub>x</sub>Ni<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> system, **136**, 8  $R_3Si_2C_2$  (R = Y,La-Nd,Sm,Gd-Tm), 138, 201 Cu<sup>2+</sup> in sol-gel-derived TiO<sub>2</sub>, 138, 1  $Sr_{1-x}La_xMo_5O_8$  (0  $\leq x \leq$  1), **138**, 7 CuAl<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(F,OH)<sub>2</sub>, 141, 527 Electrical resistivity  $Fe_8V_{10}W_{16}O_{85}$  low-spin  $d^5$  system, 137, 223 Ag<sub>0.7</sub>Mo<sub>3</sub>O<sub>7</sub>(PO<sub>4</sub>) bronze built up from ReO<sub>3</sub>-type slabs, 140, 128  $Fe_2Mo_{1-x}Ti_xO_4$  spinel oxides, **140**, 56 La<sub>x</sub>Mo<sub>6</sub>Se<sub>8</sub> Chevrel-phase superconductor, 136, 160 NaGdTiO<sub>4</sub> layered perovskite, 138, 342  $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$  (0.5  $\leq x \leq$  0.9) perovskite, **139**, 388  $Pb_x(PO_2)_4(WO_3)_{2m}$  (6  $\leq m \leq$  10) bronze, 139, 362 Electron-phonon coupling SbRe<sub>2</sub>O<sub>6</sub> with Re-Re bond, 138, 245 SrNb<sub>2</sub>S<sub>5</sub> and SrTa<sub>2</sub>S<sub>5</sub>, 135, 325 **136,** 206  $TINbXO_6$  (X = W,Mo) ceramics, 141, 50 Energy of mixing Electrochemistry Li-inserted In<sub>16</sub>Fe<sub>8</sub>S<sub>32</sub>, **138**, 193 tree-Fock study, 137, 261 Li<sub>x</sub>Ni<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> system, **136**, 8 EPR, see Electron paramagnetic resonance preparation of PZT thin films on stainless steel, 136, 293 Erbium Electromotive force measurements nanocrystalline copper-doped cerium oxide, 140, 295 Electron diffraction  $Ba_4(Ba_xPt_{1-x}^{2+})Pt_2^{4+}O_9$  twinned crystal, **140**, 201  $(1-x)Bi_2O_3 \cdot xCaO$ , short-range order in  $\gamma$ -type solid solution, 135, 136, 21 (Co,Ni,Cu)<sub>1+x</sub>(Ge,Sn) B8-type phases, computer simulation of diffuse scattering, 135, 269 convergent beam,  $Ga_{3-x}In_{5+x}Sn_2O_{16}$ , 140, 242 Fe<sub>6</sub>Ge<sub>5</sub>, crystal structure relationship to B8-type structures, 141, 199 Ga-In-Sn-O ceramic, determination of oxygen atomic position, letter to editor, 136, 145 Mo<sub>2</sub>O<sub>5</sub>(OCH<sub>3</sub>)<sub>2</sub> and Mo<sub>2</sub>O<sub>5</sub>(OCH<sub>3</sub>)<sub>2</sub>·2CH<sub>3</sub>OH, 136, 247  $Ni_{1+m}Sn_{1-x}P_x$  B8-type solid solutions, Sn/P and interstitial Ni ordering, Er<sub>2</sub>Ti<sub>4</sub>O<sub>2</sub>(OC<sub>2</sub>H<sub>5</sub>)<sub>18</sub>(HOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, synthesis, characterization, and structure, 135, 149  $KEr^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf$ ), synthesis and crystal structure, 139, selected-area, Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub> phase transitions, **135**, 175 ZrV<sub>2</sub>O<sub>7</sub>, in situ analysis of temperature-dependent phase transitions, 137, 161 Sr<sub>3</sub>ErRhO<sub>6</sub>, synthesis, characterization, and magnetic properties, **139**, 79 Electronic absorption spectra ESR, see Electron paramagnetic resonance Cr(SeO<sub>2</sub>OH)(Se<sub>2</sub>O<sub>5</sub>), 135, 70 zinc arsenate and cobalt phosphate systems templated with, synthesis Electronic band structure MNX (M = Zr,Ti; X = Cl,Br,I) system, **138**, 207 and zeolite-type structures, 136, 210

Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub>, effects of cationic substitution, 141, 546  $LaNi_{0.95}M_{0.05}O_3$  (M = Mo,W,Sb,Ti,Cu,Zn) perovskites, 136, 313  $(\text{Li}_x V_{1-x})_3 BO_5 \ (x \simeq 0.3) \ \text{disordered} \ S = 1 \ \text{system}, \ 141, \ 418$ TiO<sub>2</sub> ultrafine particles, characterization by luminescence spectroscopy, Bi<sup>3+</sup> lone pair configuration in modulated Bi-2212 type oxides, 139, 194 Electron microscopy, see also High-resolution electron microscopy; Trans- $Ca_{1-x}Sr_xNbO_3$  (0  $\leq x \leq 1$ ) perovskite-type phases, **141**, 514 hexagonal perovskites with one-dimensional structures related to  $A_4A'\operatorname{Ir}_2\operatorname{O}_9$  (A = Sr,Ba;  $A' = \operatorname{Cu}_2\operatorname{Zn}$ ), commensurate and incommensur- $Pb_x(PO_2)_4(WO_3)_{2m}$  (6  $\leq m \leq$  10) bronze, 139, 362 TaReSe<sub>4</sub> layered crystals, structure, defect structure, microstructure, and Mn<sup>2+</sup>-doped AlF<sub>3</sub>, and ab initio quantum chemical calculations, 139, 27 MoV in tetragonal and monoclinic phases of zirconia, 136, 263 Pr<sup>4+</sup> doped in BaSnO<sub>3</sub>, Ba<sub>2</sub>SnO<sub>4</sub>, and Ba<sub>3</sub>Sn<sub>2</sub>O<sub>7</sub>, **138**, 329 Gd<sup>3+</sup> and Eu<sup>3+</sup> in crystalline materials and glasses of same composition, MnO-NiO, MgO-MnO, and CaO-MnO solid solutions, ab initio Har-Er<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424 ErBa<sub>2</sub>Cu<sub>3</sub>O<sub>6.5</sub>, half filling of O intercalation in, new orthorhombicity type and cell volume expansions near, 135, 307 ErBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+w</sub> triple perovskites, <sup>57</sup>Fe Mössbauer study, **139**, 168 ErBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+x</sub> phases, powder neutron and X-ray diffraction studies, ErBi<sub>2</sub>O<sub>4</sub>NO<sub>3</sub>, preparation and crystal structure, 139, 321 Er(ClO<sub>4</sub>)<sub>3</sub>, crystalline and molecular structures, 139, 259 Er<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424 Er<sub>5</sub>O(OPr<sup>i</sup>)<sub>13</sub>, synthesis and properties, **141**, 168 Er<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201 Er-Te binary and Er-Te-I ternary systems, nonstoichiometry in, 139, zirconium phosphate fluorides templated with, hydrothermal synthesis and crystal structure, **135**, 293

zirconium phosphates of variable dimensions templated by, crystal structures, 140, 46

Europium

CaS:Eu,La, Eu valencies in, **138**, 149 Eu<sup>3+</sup>

 $LiYO_2$  doped with, monoclinic and tetragonal structures, refinement, 137, 242

vibronic transitions in crystalline materials and glasses of same composition, **136**, 206

EuAlO<sub>3</sub> perovskite, stability, calorimetric study, 141, 424

EuBa<sub>2</sub>Cu<sub>3</sub>O<sub>y</sub>, shock synthesis, effect of ionic radius difference of Eu<sup>3+</sup> and Ba<sup>2+</sup>, **136**, 74

Eu<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11-8</sub>, sol-gel synthesis and simultaneous oxidation, **138**, 141

Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub>, electronic and magnetic properties, effects of cationic substitution, **141**, 546

EuBi<sub>2</sub>O<sub>4</sub>NO<sub>3</sub>, preparation and crystal structure, 139, 321

Eu<sub>3</sub>(BO<sub>3</sub>)<sub>2</sub>F<sub>3</sub>, ab initio structure determination, 139, 52

Eu(ClO<sub>4</sub>)<sub>3</sub>, crystalline and molecular structures, 139, 259

Eu<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, 141, 424

EuI<sub>2</sub>-KI binary system, phase diagram, 136, 134

EuTIn (T = Zn,Pd,Pt,Au) intermetallic compounds, <sup>151</sup>Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174

 $Eu_{2-x}Sr_xNiO_{4+\delta}$ , preparation, crystal structure, and reducibility, **141**, 99

NaEuTiO<sub>4</sub> layered perovskites, magnetic properties, 138, 342

Sr<sub>2</sub>EuMn<sub>2</sub>O<sub>7</sub>, Ruddlesden–Popper phases, HRTEM study, **138**, 135

Sr<sub>3</sub>EuRhO<sub>6</sub>, synthesis, characterization, and magnetic properties, **139**, 79

Eutectic mixtures

UCl<sub>4</sub> with KCl, selective deposition of UCl<sub>4</sub> and (KCl)<sub>x</sub>(UCl<sub>4</sub>)<sub>y</sub> inside carbon nanotubes using, **140**, 83

Evaporation

thermal, Bi<sub>2</sub>S<sub>3</sub> thin films prepared by, properties, 136, 167

EXAFS, see Extended X-ray absorption fine structure

Extended X-ray absorption fine structure

Sn<sup>4+</sup>-doped indium oxide and In<sub>4</sub>Sn<sub>3</sub>O<sub>12</sub>, 135, 140

F

Fluorine

AIF<sub>3</sub>, temperature- and gas-phase-mediated reorganization and paramagnetic doping, 139, 27

Ba<sub>2</sub>MoO<sub>3</sub>F<sub>4</sub>, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd REDOR NMR study, **140**, 285

BaScO<sub>2</sub>F perovskite, synthesis and structure, **139**, 422

 $Ba_2WO_3F_4,$  oxygen/fluorine ordering in,  $^{19}F$  MAS and  $^{19}F^{-113}Cd$  REDOR NMR study,  $140,\ 285$ 

 $M_2$ BN<sub>2</sub>F (M =Ca,Sr), compounds with isolated BN<sub>2</sub><sup>3-</sup> units, 135,

 $Ln_3(BO_3)_2F_3$  (Ln = Sm,Eu,Gd), *ab initio* structure determination, 139,

CaF<sub>2</sub>, structure candidates, determination, 136, 233

CdWO<sub>3</sub>F<sub>2</sub>, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd REDOR NMR study, **140**, 285

CuAl<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(F,OH)<sub>2</sub>, hydrothermal synthesis, crystal structure, and properties, **141**, 527

 $KLn^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf; Ln^{III} = Ce-Lu$ ), synthesis and crystal structure, **139**, 248

K<sub>1-x</sub>Li<sub>x</sub>MnF<sub>3</sub> single crystal, phase transition and structure in range 100–298 K, **137**, 71

 $(K_xNa_{1-x})MgF_3$  perovskites, crystal chemistry and phase transitions in P-T-X space, **141**, 121

 $K_2NbO_3F$ , oxygen/fluorine ordering in,  $^{19}F$  MAS and  $^{19}F^{-113}Cd$  REDOR NMR study, **140**, 285

 $K_2NiF_4$ , structure,  $La_2Li_{1/2}M_{1/2}O_4$  (M(III) = Co,Ni,Cu) with variant of, 138, 18

KTb<sup>III</sup>Tb<sub>2</sub><sup>IV</sup>F<sub>12</sub>, synthesis and crystal structure, **139**, 248

LiF-WO<sub>3</sub>, ammonolysis, *in situ* X-ray diffraction study: detection and crystal structure of Li<sub>0.84</sub>W<sub>1.16</sub>N<sub>2</sub>, **138**, 154

MgF<sub>2</sub>, structure candidates, determination, 136, 233

NaMoO<sub>3</sub>F, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd RE-DOR NMR study, **140**, 285

Na<sub>3</sub>ScF<sub>6</sub>, single-crystal high-pressure studies, 135, 116

Sn(ND<sub>3</sub>)<sub>2</sub>F<sub>4</sub>, structure, implications for synthesis of nitride fluorides, 138, 350

 $Sr_{2-x}A_xCuO_2F_{2+\delta}$  (A=Ca,Ba) superconductors, synthetic pathways and associated structural rearrangements, 135, 17

zirconium phosphate fluorides templated with amines, hydrothermal synthesis and crystal structure, 135, 293

Fluorohectorite heterostructures

intercalation process in formation of, analysis, 139, 281

Flux synthesis

LiCoO<sub>2</sub> single crystals, letter to editor, 141, 298

 $A_2$ Sn<sub>4</sub>S<sub>9</sub> (A = K,Rb,Cs) layered compounds, **141**, 17

Formaldehyde

formation by methanol oxidation over Mo catalysts,  $Mo_2O_5(OCH_3)_2$  and  $Mo_2O_5(OCH_3)_2 \cdot 2CH_3OH$  compounds modeling, structure, 136, 247

Fuel cells

cathode, lanthanun strontium manganate(III)(IV) materials for, oxidation kinetics, *in situ* powder diffraction studies, **141**, 235

G

Gadolinium

(Ca,Gd)<sub>2</sub>(Al,Ti)O<sub>4</sub>, crystal structure, **139**, 204

CaTiO<sub>3</sub> doped with, charge compensation in, **124**, 77; comment, **137**, 355; reply, **137**, 357

Gd<sup>3+</sup>, vibronic transitions in crystalline materials and glasses of same composition, 136, 206

GdAgGe, GdAuGe, GdAu<sub>0.44(1)</sub>In<sub>1.56(1)</sub>, and GdAuIn antiferromagnets, structure, bonding, magnetic susceptibility, and <sup>155</sup>Gd Mössbauer spectroscopy, **141**, 352

GdAlO<sub>3</sub> perovskite, stability, calorimetric study, 141, 424

 $GdBa_2Fe_3O_{8+x}$  phases, powder neutron and X-ray diffraction studies, 136, 21

GdBi<sub>2</sub>O<sub>4</sub>NO<sub>3</sub>, preparation and crystal structure, 139, 321

Gd<sub>3</sub>(BO<sub>3</sub>)<sub>2</sub>F<sub>3</sub>, ab initio structure determination, 139, 52

Gd<sub>0.5</sub>Ca<sub>0.5</sub>MnO<sub>3</sub>, charge-ordered states, distinction based on chemical melting, 137, 365

Gd<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, 141, 424

Gd<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201

 $KGd^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf$ ), synthesis and crystal structure, 139, 248

NaGdTiO<sub>4</sub> layered perovskites, magnetic properties, **138**, 342

Ba<sub>2</sub>BiGa<sub>11</sub>O<sub>20</sub>, preparation and crystal structure, **138**, 313

 $BaGa_{12}O_{19}$ , magnetoplumbite-type compound, preparation and crystal structure, 136, 120

Ga-In-Sn-O ceramic, oxygen atomic positions in, determination with direct methods and electron diffraction, letter to editor, 136, 145

 $Ga_{3-x}In_{5+x}Sn_2O_{16}$ , structure, **140**, 242

 $LnGaO_3$  (Ln = La-Lu, Y) perovskites, stability, calorimetric study, **141**,

 $Ln_3Ga_5O_{12}$  (Ln = La-Lu, Y) garnets, stability, calorimetric study, **141**, 424

 $InGaO_3(ZnO)_m$  (m = integer), modulated structure described by four-dimensional superspace group, 139, 347

LaGaO<sub>3</sub>, Sr- and Mg-doped perovskite-type oxide-ion conductor, wet chemical synthesis, 136, 274

 $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85}$ , high-temperature powder neutron diffraction, 139, 135

Li<sub>9</sub>Ga<sub>3</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, crystal structure and cation transport properties, 138, 32

[NH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>NH<sub>3</sub>][Ga(PO<sub>4</sub>)(PO<sub>3</sub>OH)], synthesis and characterization, 136, 227

### Garnet

Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, cationic substitutions, associated transition to alluaudite structure, **137**, 112

 $Ln_3M_5O_{12}$  (Ln = La-Lu, Y; M = Al,Ga), stability, calorimetric study, **141**, 424

#### Germanium

Ce-Al-(Si,Ge) systems, phase equilibria and physical properties, 137, 191

Co<sub>1+x</sub>Ge, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, 140, 402

(Co,Ni,Cu)<sub>1 + x</sub>(Ge,Sn) *B8*-type phases, modulated structures and diffuse scattering, computer simulation, **135**, 269

Fe<sub>6</sub>Ge<sub>5</sub>, crystal structure, relationship to *B*8-type structures, **141**, 199 GdAgGe and GdAuGe antiferromagnets, structure, bonding, magnetic susceptibility, and <sup>155</sup>Gd Mössbauer spectroscopy, **141**, 352

 $M_2$ Ge intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218

GeSe<sub>2</sub>, pressure-induced amorphization, **141**, 248

 $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$ , electrical properties, effect of  $Ge^{4+}$ , **140**, 431  $Na_2Ge_4O_9$ , structure, **140**, 175

NaLa<sub>9</sub>(GeO<sub>4</sub>)<sub>6</sub>O<sub>2</sub> apatite, single-crystal growth and structure determination, **139**, 304

 $Ni_{1+x}Ge$ , nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402

## Glass

 $AgI:Ag_2MoO_4$  system, phase diagram: devitrification and metastability, 140, 91

and crystalline materials of same composition, vibronic transitions of Gd<sup>3+</sup> and Eu<sup>3+</sup> in, **136**, 206

## Glycine

diglycine hydrogen selenite and monoglycine-selenious acid crystals, vibrational spectra and DSC measurement and structure of DGSe(IV), 140, 71

## Goethite

aciculate ultrafine particles, rheology under alkaline conditions, 141, 94 fold

AuTa<sub>5</sub>S, synthesis and structure, **139**, 45

EuAuIn intermetallic compounds, <sup>151</sup>Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174

GdAuGe, GdAu<sub>0.44(1)</sub>In<sub>1.56(1)</sub>, and GdAuIn antiferromagnets, structure, bonding, magnetic susceptibility, and <sup>155</sup>Gd Mössbauer spectroscopy, **141**, 352

## Gypsum

dehydration, Controlled transformation Rate Thermal Analysis, 139, 37

## Н

## Hafnium

BaHfN<sub>2</sub>, synthesis, structure, and magnetic properties, 137, 62

BaHf<sub>1-x</sub>Zr<sub>x</sub>N<sub>2</sub> solid solution, synthesis, structure, and magnetic properties. 137, 62

 $KLn^{III}Hf_2^{IV}F_{12}$  ( $Ln^{III}$  = Ce–Lu), synthesis and crystal structure, **139**, 248  $Zr_{2.7}Hf_{11.3}P_9$ , bonding and site preferences, **136**, 221

## Hall coefficient

Sb<sub>2</sub>Te<sub>3</sub> and Bi<sub>2</sub>Te<sub>3</sub> single crystals with incorporated Ag, 140, 29

Hartree-Fock study

energies of mixing of MnO-NiO, MgO-MnO, and CaO-MnO solid solutions, *ab initio* calculations, **137**, 261

#### Hewettite

 $BaV_6O_{16} \cdot nH_2O$ , hydrothermal synthesis and crystal structure, **140**, 219 High-resolution electron microscopy

 $Ba_5Ta_4O_{15}$ – $MZrO_3$  (M = Ba,Sr) system, hexagonal perovskites in, **141**, 492

digital, imaging of Y atoms in YB<sub>56</sub> with YB<sub>66</sub> structure, **135**, 182

 $Ga_{3-x}In_{5+x}Sn_2O_{16}$ , 140, 242

host-layer restacking in Hg<sub>x</sub>TiS<sub>2</sub>, **141**, 330

 $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$  phase transitions to  $V_{0.27}W_{0.73}O_{2.865},\\$  136, 284

Ruddlesden–Popper compositions  $Sr_2LnMn_2O_7$  (Ln = Y,La,Nd,Eu,Ho), 138, 135

## Hollandite-type compounds

ordered, NdMo<sub>6</sub>O<sub>12</sub>, synthesis, crystal structure, and characterization, 136. 87

### Holmium

Ho<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424

Ho(ClO<sub>4</sub>)<sub>3</sub>, crystalline and molecular structures, **139**, 259

Ho<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424

Ho<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201

 $KHo^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf$ ), synthesis and crystal structure, 139, 248

Sr<sub>2</sub>HoMn<sub>2</sub>O<sub>7</sub>, Ruddlesden–Popper phases, HRTEM study, 138, 135

 $Sr_3HoRhO_6$ , synthesis, characterization, and magnetic properties, 139, 79

## Host-layer restacking

in Hg<sub>x</sub>TiS<sub>2</sub>, mechanism, **141**, 330

HREM, see High-resolution electron microscopy

Hückel calculations

MNX (M = Zr,Ti; X = Cl,Br,I) system, 138, 207

Sn(ND<sub>3</sub>)<sub>2</sub>F<sub>4</sub>, 138, 350

Hydrochloric acid

nondoped sol-gel ZrO<sub>2</sub> prepared with, tetragonal nanophase stabilization. 135, 28

## Hydrogen

anhydrous bisoctyltrimethylammonium dichromate, crystal structure, 139, 310

Ba<sub>3</sub>AlO<sub>4</sub>H, synthesis and structure, 141, 570

Ba<sub>2</sub>(VO<sub>2</sub>)(PO<sub>4</sub>)(HPO<sub>4</sub>)·H<sub>2</sub>O, with trigonal bipyramidal VO<sub>5</sub> groups, hydrothermal synthesis and crystal structure, **140**, 272

 $\label{eq:cahpode} CaHPO_4\cdot 2H_2O \ phosphates, composites with polymer, percolation and modeling of proton conduction in, \ 141,\ 392$ 

[(CH<sub>3</sub>)<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O]Ag<sub>4</sub>I<sub>5</sub>, silver ion distribution and flow in, cooperative disorder model, **140**, 1

 $(C_4H_{12}N_2)_2[Fe_6(HPO_4)_2(PO_4)_6(H_2O)_2] \cdot H_2O$  templated by piperazine, synthesis and characterization, **139**, 326

 $[(CH_3NH_3)_{1.03}K_{2.97}]Sb_{12}S_{20}\cdot 1.34H_2O$ , hydrothermal synthesis and crystal structure, **140**, 387

 $C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O$ , crystal structure and thermal behavior, **141**, 343

 $C_6H_{18}N_3^{2+} \cdot 2HPO_4^- \cdot 4H_2O$ , crystal structure and thermal behavior, 141, 343

Cs<sub>3</sub>(HSeO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>PO<sub>4</sub>), synthesis and crystal structure, **141**, 317

Cs<sub>5</sub>(HSeO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, synthesis and crystal structure, **141**, 317

Cs<sub>5</sub>(HSO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, solid acid with unique hydrogen bond network, X-ray diffraction study, **140**, 251

 $\beta$ -Cs<sub>3</sub>(HSO<sub>4</sub>)<sub>2</sub>[H<sub>2-x</sub>(P<sub>1-x</sub>,S<sub>x</sub>)O<sub>4</sub>] ( $x \sim 0.5$ ) superprotonic conductor, structure and vibrational spectrum, **139**, 373

CsMnHP<sub>3</sub>O<sub>10</sub>, magnetic structure and properties, 141, 160

Cs<sub>4</sub>(SeO<sub>4</sub>)(HSeO<sub>4</sub>)<sub>2</sub>(H<sub>3</sub>PO<sub>4</sub>), synthesis and crystal structure, 141, 317

1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and physical properties, 136, 93

diglycine hydrogen selenite, crystal structure, vibrational spectra, and DSC measurement, **140**, 71

 ${\rm Er_2Ti_4O_2(OC_2H_5)_{18}(HOC_2H_5)_2},$  synthesis, characterization, and structure, **135**, 149

ethylenediamine-templated 1-D  $[enH_2][Zr(HPO_4)_3]$  and 2-D  $[enH_2]_{0.5}[Zr(PO_4)(HPO_4)]$ , crystal structures, **140**, 46

ethylenediamine-templated zinc arsenate and aluminum cobalt phosphate, synthesis and zeolite-type structures, **136**, 210

H<sub>2</sub>, spontaneous polarization, stabilization of, contrast with stabilization of diproportionation in BaBiO<sub>3</sub>, letter to editor, **138**, 369

H<sub>x</sub>MoO<sub>3</sub> bronze, protonic locations in, 141, 255

H<sub>2</sub>O-Na<sub>2</sub>SO<sub>4</sub>-Na<sub>2</sub>HPO<sub>4</sub> system, isotherms, conductivity measurements, **140**, 316

 $(H_2O)[V_2O_2(OH)\{O_3P(CH_2)_2PO_3\}]$ , hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89

 $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$ , phase transitions to  $V_{0.27}W_{0.73}O_{2.865}$ , X-ray, thermal, and HREM studies, 136, 284

KBH<sub>4</sub>, reduction of KMnO<sub>4</sub> in aqueous solutions: synthesis of manganese oxides. 137, 28

KH<sub>2</sub>PO<sub>4</sub>, high-temperature form, preparation and crystal structure,

 $\text{Li}_{1-x}\text{H}_x\text{IO}_3$ -type complex crystals, structure–property relationships, 135, 121

monoglycine-selenious acid crystals, vibrational spectra and DSC measurement, 140, 71

 $Mo_2O_5(OCH_3)_2$  and  $Mo_2O_5(OCH_3)_2 \cdot 2CH_3OH$ , structural analysis, 136, 247

 $[N_2C_3H_5][AlP_2O_8H_2\cdot 2H_2O]$  and  $2[N_2C_3H_5][Al_3P_4O_{16}H]$ , synthesis and structure, letter to editor, **136**, 141

[N(C<sub>2</sub>H<sub>5</sub>NH<sub>3</sub>)<sub>3</sub>]<sup>3+I</sup>Sn(PO<sub>4</sub>)(HPO<sub>4</sub>)]<sup>3-4</sup>H<sub>2</sub>O, connected through hydrogen bonding, synthesis and structure, **139**, 207

[NH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>NH<sub>3</sub>][Ga(PO<sub>4</sub>)(PO<sub>3</sub>OH)], synthesis and characterization, 136, 227

 $[NH_3(CH_2)_8NH_3]_3[V_{15}O_{36}(Cl)](NH_3)_6(H_2O)_3$ , synthesis and structure, **136**, 298

 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$   $nH_2O$  thin film, hydrothermal synthesis, **141**, 229

 $[Sn_2(PO_4)_2]^2$   $[C_2N_2H_{10}]^2$  ·  $H_2O$ , synthesis and crystal structure, **140**, 435

Ti(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>), crystal structure from neutron powder data, **140**, 266 Tl<sub>2</sub>(MoO<sub>3</sub>)<sub>3</sub>PO<sub>3</sub>CH<sub>3</sub>, synthesis, structure, and properties, **138**, 365

zirconium phosphate fluorides templated with amines, hydrothermal synthesis and crystal structure, 135, 293

 $Zn(O_3PC_6H_5) \cdot H_2O$ , thermal behavior, **140**, 62

Hydrogen bonding

 $Cs_5(HSO_4)_3(H_2PO_4)_2$  solid acid, **140**, 251

in diaminoanthraquinone, properties related to, 141, 309

 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$ , **139**, 207 Hydrotalcite

derived MgAlO oxides calcined at varying temperatures, structural and surface acid/base properties, 137, 295

Hydrothermal synthesis

 $BaV_6O_{16} \cdot nH_2O$ , **140**, 219

 $Ba_2(VO_2)(PO_4)(HPO_4) \cdot H_2O$  with trigonal bipyramidal  $VO_5$  groups,

 $RBi_2O_4NO_3$  (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **139**, 321

 $[(CH_3NH_3)_{1.03}K_{2.97}]Sb_{12}S_{20} \cdot 1.34H_2O$ , **140**, 387

α-CoV<sub>3</sub>O<sub>8</sub>, **141**, 133

CuAl<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(F,OH)<sub>2</sub>, 141, 527

ethylenediamine-templated zeolite-type structures in zinc arsenate and cobalt phosphate systems, **136**, 210

γ-Fe<sub>2</sub>O<sub>3</sub> nanocrystalline particles, **137**, 185

KH<sub>2</sub>PO<sub>4</sub>, **141**, 486

LiFeO<sub>2</sub> prepared by, magnetic properties, 141, 554

effect of cation arrangement, 140, 159

LiZnPO<sub>4</sub> polymorph with cristobalite-type framework topology, 138, 126

MIL-5 composite microporous compounds, 141, 89

 $Na_5[B_2P_3O_{13}]$ , letter to editor, 140, 154

NaFe<sub>3.67</sub>(PO<sub>4</sub>)<sub>3</sub>, **139**, 152

 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$  nH<sub>2</sub>O thin film, **141**, 229

 $Sn_2(PO_4)[C_2O_4]_{0.5}$  containing one-dimensional tin phosphate chains, 139, 200

 $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O$ , 140, 134

Tl<sub>2</sub>(MoO<sub>3</sub>)<sub>3</sub>PO<sub>3</sub>CH<sub>3</sub>, **138**, 365

VO<sub>2</sub>, 138, 178

zirconium phosphate fluorides templated with amines, 135, 293 Hydroxide

 $Al_{13}O_4(OH)_{24}(H_2O)_{12}^{7+}$ , encapsulation into  $MoS_2$  and  $WS_2$  and Rietveld structural characterization, **139**, 22

Cr(SeO<sub>2</sub>OH)(Se<sub>2</sub>O<sub>5</sub>), modifications of, crystal structures and electronic absorption spectra, **135**, 70

CuAl<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(F,OH)<sub>2</sub>, hydrothermal synthesis, crystal structure, and properties, **141**, 527

 $\rm Er_2Ti_4O_2(OC_2H_5)_{18}(HOC_2H_5)_2,$  synthesis, characterization, and structure, 135, 149

α-FeOOH aciculate ultrafine particles, rheology under alkaline conditions, 141, 94

(H<sub>2</sub>O)[V<sub>2</sub>O<sub>2</sub>(OH){O<sub>3</sub>P(CH<sub>2</sub>)<sub>2</sub>PO<sub>3</sub>}], hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89

Mo<sub>2</sub>O<sub>5</sub>(OCH<sub>3</sub>)<sub>2</sub>·2CH<sub>3</sub>OH, structural analysis, **136**, 247

 $[NH_3(CH_2)_4NH_3][Ga(PO_4)(PO_3OH)]$ , synthesis and characterization, 136, 227

 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$   $nH_2O$  thin film, hydrothermal synthesis, **141**, 229

 $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O$ , synthesis and crystal structure, **140**, 134

 $TlB_5O_6(OH)_4 \cdot 2H_2O$ , dehydration, 136, 216

Hydroxyapatite

Ca-Pb hydroxyapatites, thermal and structural properties and oxidation of methane, 135, 86

1

Imidazolium

 $[N_2C_3H_5][AlP_2O_8H_2\cdot 2H_2O]$  and  $2[N_2C_3H_5][Al_3P_4O_{16}H]$ , synthesis and structure, letter to editor, **136**, 141

Indium

CuInP<sub>2</sub>S<sub>6</sub>, soft-chemistry forms, **141**, 290

EuTIn (T = Zn,Pd,Pt,Au) intermetallic compounds, <sup>151</sup>Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174

Ga-In-Sn-O ceramic, oxygen atomic positions in, determination with direct methods and electron diffraction, letter to editor, 136, 145

 $Ga_{3-x}In_{5+x}Sn_2O_{16}$ , structure, **140**, 242

GdAu<sub>0.44(1)</sub>In<sub>1.56(1)</sub> and GdAuIn antiferromagnets, structure, bonding, magnetic susceptibility, and <sup>155</sup>Gd Mössbauer spectroscopy, **141**, 352

 $In-Bi_2S_3$ , annealed thin films, structural and electrical properties, 138, 290

 $In_{16}Fe_8S_{32}$ , lithium-inserted, structure and electrochemical behavior, 138. 193

 $InMO_3(ZnO)_m(M = In,Ga; m = integer)$ , modulated structure described by four-dimensional superspace group, **139**, 347

 $In_2S_3$  thin films, study by diffraction of synchrotron radiation, 137, 6  $In_4Sn_3O_{12}$ , structural studies, 135, 140

K<sub>4</sub>In<sub>2</sub>(PSe<sub>5</sub>)<sub>2</sub>(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, synthesis, structure, and optical and thermal properties, 136, 79

 $La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3$  perovskites, structural, magnetic, and electrical properties, 138, 226

LiIn, pressure-induced phase transformation from NaTl-type phases to  $\beta$ -brass-type alloys, **137**, 104

 $Ni_y(Cr_{2-2x}In_{2x})_{1-y}S_{3-y}$  spinel, decomposition and X-ray powder diffraction, 136, 193

Pb<sub>1-x</sub>In<sub>x</sub>Te single crystals, point defect clusters revealed by X-ray diffuse scattering method, **137**, 119

Sn<sup>4+</sup>-doped indium oxide, structural studies, **135**, 140

Sr<sub>3</sub>InRhO<sub>6</sub> with K<sub>4</sub>CdCl<sub>6</sub> structure, synthesis and characterization, 139,

Infrared spectroscopy

 $Bi_9(V_{1-x}P_x)_2ClO_{18}$  series  $(0 \le x \le 1)$ , **136**, 34

 $\alpha$ -Ca<sub>3</sub>N<sub>2</sub>, **137**, 33

(1:1)  $Cd_3^{II}[(Tr^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O$  complexes (Tr = Co, Fe), 140, 140

 $\beta$ -Cs<sub>3</sub>(HSO<sub>4</sub>)<sub>2</sub>[H<sub>2-x</sub>(P<sub>1-x</sub>,S<sub>x</sub>)O<sub>4</sub>] (x ~ 0.5) superprotonic conductor, 139, 373

diglycine hydrogen selenite and monoglycine-selenious acid crystals, 140, 71

γ-Fe<sub>2</sub>O<sub>3</sub> nanocrystalline particles, **137**, 185

 $La_{1-x}Ba_xCoO_3$  ceramics, 137, 211

Mg<sub>3</sub>N<sub>2</sub>, **137**, 33

NbO(O<sub>2</sub>)<sub>0.5</sub>PO<sub>4</sub>·2H<sub>2</sub>O, 137, 289

 $MNi(AsO_4)$  (M = Li,Na), 141, 508

order-disorder phase transition in bicyclononanone, 136, 16

 $Sn(ND_3)_2F_4$ , 138, 350

 $Sr_{2-x}Pb_x(VO)(VO_4)_2$  solid solutions, **140**, 417

Tl<sub>2</sub>(MoO<sub>3</sub>)<sub>3</sub>PO<sub>3</sub>CH<sub>3</sub>, 138, 365

Interatomic distance

 $La_xMo_6Se_8$  Chevrel-phase superconductor, correlation with  $T_c$ , 136, 151 Intermetallics

 $M_2X$ , nonmetal insertion in h.c.-like metallic distribution, 135, 218 Iodine

 $AgI:Ag_2MoO_4$  system, phase diagram: devitrification and metastability, 140. 91

[(CH $_3$ ) $_2$ N(CH $_2$ CH $_2$ ) $_2$ O]Ag $_4$ I $_5$ , silver ion distribution and flow in, cooperative disorder model, 140, 1

Er-Te-I ternary systems, nonstoichiometry in, 139, 57

EuI<sub>2</sub>-KI binary system, phase diagram, 136, 134

 ${\rm IBi_2Sr_2CaCu_2O_y},$  superconducting intercalates, charge transfer- $T_c$  relationship, 138, 66

Li<sub>1-x</sub>H<sub>x</sub>IO<sub>3</sub>-type complex crystals, structure-property relationships, 135, 121

LiI<sub>3</sub>Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> layered cuprate, synthesis and characterization, 141, 452

MNI (M = Zr,Ti) system, electronic band structure, 138, 207

PdTeI, single-crystal X-ray diffraction and electronic band structure studies, 137, 206

TII, defects and ionic conductivity at high pressure and temperature, **141**, 462

Ion exchange

 $A_xK_{1-x}Bi_3S_5$  ( $A = Li,Na,NH_4$ ) preparation by solid-state route, letter to editor, **136**, 328

Ionic conductivity

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$  system, **140**, 377

TICl, TIBr, and TII at high pressure and temperature, **141**, 462 Ionic conductors

BICOVOX.15, structure, single-crystal neutron diffraction study at room temperature, **141**, 241

one-dimensional, [(CH<sub>3</sub>)<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O]Ag<sub>4</sub>I<sub>5</sub>, silver ion distribution and flow in, cooperative disorder model, **140**, 1

Ionic radius

 $\mathrm{Ba^{2+}}$  and  $RE^{3+}$  in  $RE\mathrm{Ba_2Cu_3O_y}$  ( $RE=\mathrm{Y,Eu,La}$ ), difference between, effects in shock synthesis, 136, 74

Iridium

 $\text{Ca}_3\text{Co}_{1+x}\text{Ir}_{1-x}\text{O}_6$ , one-dimensional oxides, synthesis and magnetic properties, **140**, 14

 $A_2 \text{Ir}_2 \text{O}_{7-y}$  pyrochlores, structural and electronic properties, **136**, 269  $A_4 A' \text{Ir}_2 \text{O}_9$  (A = Sr, Ba; A' = Cu, Zn), commensurate and incommensurate phases, **136**, 103

Iron

 $Ba_6Cu_{12}Fe_{13}S_{27}$ , synthesis and crystal structure, **128**, 62; comment, **137**, 353; reply, **137**, 354

BaFe<sub>12</sub>O<sub>19</sub> hexagonal ferrite, Raman spectra and vibrational analysis, 137, 127

RBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+x</sub> phases (R = La,Nd,Sm,Gd,Dy,Er,Yb,Lu,Y), powder neutron and X-ray diffraction studies, **136**, 21

 $REBa_2Fe_3O_{8+w}$  triple perovskites (RE = Dy,Er,Y), <sup>57</sup>Fe Mössbauer study, **139**, 168

6H-Ba(Ti,Fe<sup>3+</sup>,Fe<sup>4+</sup>) $O_{3-\delta}$  solid solution, structural analysis, **135**, 312 CaFe<sub>1/2</sub>Nb<sub>1/2</sub> $O_3$ , crystal chemistry, **138**, 272

CaTi<sub>1-2x</sub>Fe<sub>x</sub>Nb<sub>x</sub>O<sub>3</sub> perovskite series, structural study, **138**, 272

(1:1)  $Cd_3^{II}[(Fe^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O$  complexes, structural and spectral studies, **140**, 140

 $(C_4H_{12}N_2)_2[Fe_6(HPO_4)_2(PO_4)_6(H_2O)_2] \cdot H_2O$  templated by piperazine, synthesis and characterization, **139**, 326

Co<sub>x</sub>Cu<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> spinel powders, cation migration and coercivity in, 141, 56

 $Cu_2^{II}Fe^{II}(CN)_6$  and  $Cu_3^{II}[Fe^{II}(CN)_6]_2$ , mechanisms of Cs sorption on, relationship to crystal structure, **141**, 475

Fe<sup>3+</sup>, substitution for Mn<sup>3+</sup> in  $Ln_{0.5}A_{0.5}MnO_3$  (Ln = Nd,Gd,Y; A = Ca,Sr), **137**, 365

FeAl<sub>2</sub>O<sub>4</sub>, formation from  $\alpha$ - and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>-supported oxides, 135, 59

Fe<sub>6</sub>Ge<sub>5</sub>, crystal structure, relationship to B8-type structures, 141, 199

Fe<sub>2</sub>Mo<sub>1-x</sub>Ti<sub>x</sub>O<sub>4</sub> spinel oxides, electrical resistivity and thermoelectric power measurements, **140**, 56

α-Fe<sub>2</sub>O<sub>3</sub> doped with Mg<sup>2+</sup>, structural characterization, **140**, 428

 $\gamma\text{-Fe}_2O_3$  nanocrystalline particles, hydrothermal synthesis and characterization, 137, 185

ε-Fe<sub>2</sub>O<sub>3</sub>, structural and magnetic characterization, 139, 93

 $\alpha$ -FeOOH aciculate ultrafine particles, rheology under alkaline conditions, 141, 94

Fe-S materials, mechanochemical synthesis, 138, 114

Fe<sub>0.33</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250

Fe<sub>2.5</sub>Ti<sub>0.5</sub>O<sub>4</sub> nanocrystals, obtained by mechanosynthesis and soft chemistry, structure, cation distribution, and properties, **139**, 66

Fe<sub>2.75</sub>Ti<sub>0.25</sub>O<sub>4</sub>, cation distribution in, measurement by *in situ* anomalous powder diffraction with Rietveld refinement, **141**, 105

Fe<sub>8</sub>V<sub>10</sub>W<sub>16</sub>O<sub>85</sub> low-spin d<sup>5</sup> system, magnetic, electrical conductivity, and EPR studies, **137**, 223

 ${\rm In_{16}Fe_8S_{32}}$ , lithium-inserted, structure and electrochemical behavior, 138, 193

LaBa $_2$ Fe $_3$ O $_{8+w}$  ( -0.20 < w < 0.83), cubic perovskite-type phase,  $^{57}$ Fe Mössbauer spectroscopy, **138**, 87

LaNi<sub>1-x</sub>Fe<sub>x</sub>O<sub>2.5+ $\delta$ </sub>, vacancy-ordered phase, synthesis and crystal structure, **135**, 103

 $\text{Li}_{1-x}\text{Fe}_{5+x}\text{O}_{8}$ , obtained by solvothermal reaction, magnetic properties, 141, 554

LiFeO<sub>2</sub>

obtained by hydrothermal reaction, magnetic properties, **141**, 554 prepared by hydrothermal reaction and postannealing method, magnetic properties, effect of cation arrangement, **140**, 159

 $\text{Li}_3\text{Fe}_2(XO_4)_3$  (X = P,As), cathode materials for rechargeable lithium batteries, 3D framework structure, 135, 228

Li<sub>9</sub>Fe<sub>3</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, crystal structure and cation transport properties, **138.** 32

Li<sub>2</sub>O-Fe<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> system, nonstoichiometric Li-pseudobrookite(ss) in, 141, 221

mechanosynthesized zinc ferrite, structural disorder in, 135, 52

 $(\mathrm{Mg_xFe_{1-x}})_{3-\delta}\mathrm{O_4}$ , composition (x) dependence of nonstoichiometry  $(\delta)$  measurement, 139, 128

Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, cationic substitutions, associated transition from garnet to alluaudite structure, **137**, 112

 $NaFe_{3.67}(PO_4)_3$ , hydrothermal synthesis, structure, and characterization, 139, 152

Na-Fe/SiO<sub>2</sub> catalysts, surface coordinate geometry: formation of tetrahedral/octahedral site on silica surface, 137, 325

 $Na_{x-\delta}Fe_xTi_{2-x}O_4$  ( $x=0.875, 0 \le \delta \le 0.40$ ), conductivity, 137, 168 Ni–Fe alloy/magnetite composites, synthesis and microstructure, 135, 210

 $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$  mixed-conducting materials, structure and property relationships, **141**, 576

YbFe<sub>2</sub>O<sub>4</sub> structure type, compounds with, frustrated magnetism and spin-glass behavior, **140**, 337

Zn-Mn spinel ferrites, nanocrystals obtained by high-energy ball milling, chemical homogeneity, **141**, 10

J

Jahn-Teller distortion

in  $LiNiO_2$ , in situ X-ray absorption fine structure analysis, letter to editor, **140**, 145

Κ

#### Kinetics

oxidation of fuel cell cathode materials lanthanun strontium manganates(III)(IV), in situ powder diffraction studies, 141, 235

prephase state accumulation in 2-bromo-2-nitropropane-1,3-diol crystals, 137, 231

L

## Lanthanum

CaS:Eu,La, Eu valencies in, 138, 149

La<sup>3+</sup>, doping of Na<sub>2</sub>SO<sub>4</sub>, effect on electrical conductivity, **138**, 369 LaAlO<sub>3</sub> perovskite, stability, calorimetric study, **141**, 424

La<sub>1-x</sub>Ba<sub>x</sub>CoO<sub>3</sub> ceramics, conductivity and IR absorption, 137, 211

 $LaBa_2Cu_3O_y$ , shock synthesis, effect of ionic radius difference of  $La^{3+}$  and  $Ba^{2+}$ , 136, 74

 $La_2Ba_2Cu_2Ti_2O_{11-\delta}$ , sol–gel synthesis and simultaneous oxidation, 138, 141

LaBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+w</sub> (-0.20 < w < 0.83), cubic perovskite-type phase, <sup>57</sup>Fe Mössbauer spectroscopy, **138**, 87

LaBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+x</sub> phases, powder neutron and X-ray diffraction studies, 136. 21

LaB<sub>3</sub>O<sub>6</sub>, crystalline and glass modifications, vibronic transitions of Gd<sup>3+</sup> and Eu<sup>3+</sup> in, 136, 206

 $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$ , electrical properties, effect of  $Ge^{4+}$ , 140, 431

 $La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3$  perovskites, structural, magnetic, and electrical properties, 138, 226

La<sub>0.2</sub>Ca<sub>0.8</sub>MnO<sub>3</sub>, structural and morphological changes associated with charge ordering, 140, 331

 $La_{1-x}Ca_xMnO_3$ , structure, stoichiometry, and phase purity, **140**, 320  $La(ClO_4)_3$ , crystalline and molecular structures, **139**, 259

La<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>, crystal structure and magnetic properties, 141, 411

 $\text{La}_4\text{Co}_3\text{O}_{10+\delta}$  (0.00  $\leq \delta \leq$  0.30), synthesis, crystal structure, and magnetic properties, **141**, 212

LaGaO<sub>3</sub> perovskite

Sr- and Mg-doped oxide-ion conductor, wet chemical synthesis, 136, 274

stability, calorimetric study, 141, 424

 $\text{La}_2\text{Li}_{1/2}M_{1/2}\text{O}_4$  (M(III) = Co,Ni,Cu), ordered  $\text{K}_2\text{NiF}_4$  structure and bonding properties of  $M\text{O}_6$  polyhedra in related compounds, 138, 18

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$  system, synthesis, phase diagram, and conductivity, **140**, 377

La<sub>0.936</sub>Mn<sub>0.982</sub>O<sub>3</sub>, magnetoresistance effects in self-doped single crystals, letter to editor, 136, 322

 $\text{La}_{1-x-y}A_x\text{MnO}_{3-\delta}$  (A=Na,K), synthesis, structure, and properties, 137, 19

 $\text{La}_{1-x}A_x\text{MnO}_3$  (A = Ca,Sr), charge-ordered, effect of internal pressure, letter to editor, 135, 169

La<sub>12</sub>Mn<sub>2</sub>Sb<sub>30</sub> alloy, electronic structure, 139, 8

La-Mo ultrafine particles, preparation and characterization, 140, 354

La<sub>x</sub>Mo<sub>6</sub>Se<sub>8</sub> Chevrel-phase superconductor

correlation of  $T_c$  and interatomic distances, 136, 151 physical and superconducting properties, 136, 160

La<sub>2-x</sub>Nd<sub>x</sub>CuO<sub>4</sub> system, structural transitions, **140**, 345

 $La_4NiLiO_8$ , detection in  $La_2O_3$ -NiO-Li<sub>2</sub>O system at 700, 800, and 900°C, **141**, 457

LaNi<sub>1-x</sub> $M_x$ O<sub>2.5+ $\delta$ </sub> (M = Mn,Fe,Co), vacancy-ordered phase, synthesis and crystal structure, **135**, 103

 $LaNi_{0.95}M_{0.05}O_3$  (M = Mo,W,Sb,Ti,Cu,Zn) perovskites, metal-insulator transitions in, 136, 313

La<sub>2</sub>NiO<sub>4.16</sub>, magnetic properties, 138, 260

La<sub>2</sub>O<sub>3</sub>-NiO-Li<sub>2</sub>O system, phase equilibria at 700, 800, and 900°C, **141**, 457

 $La_{2-x}Pr_xNiO_{4+\delta}$ , magnetic properties, 138, 260

 $LaMS_3$  (M = Ti,V,Cr), high-pressure synthesis, 139, 233

La<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201

 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$  (0.5  $\leq x \leq$  0.9) perovskite, synthesis and properties, 139, 388

 $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4$  (0.25  $\leq x \leq$  1.10), polaronic conduction below room temperature, **139**, 176

 $\text{La}_{1-x}\text{Sr}_x\text{CrO}_3$  ( $x=0\sim0.25$ ) perovskites, magnetic and neutron diffraction study, **141**, 404

La<sub>0.9</sub>Sr<sub>0.1</sub>Ga<sub>0.8</sub>Mg<sub>0.2</sub>O<sub>2.85</sub>, high-temperature powder neutron diffraction, **139**, 135

La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3.00</sub>, oxidation kinetics, *in situ* powder diffraction studies,

 $La_5Ti_6S_3Cl_3O_{15}$ , synthesis and structural characterization, **139**, 220  $La_8Ti_{10}S_{24}O_4$ , synthesis and crystal structure, **136**, 46

LiLaP<sub>4</sub>O<sub>12</sub>, crystalline and glass modifications, vibronic transitions of Gd<sup>3+</sup> and Eu<sup>3+</sup> in, **136**, 206

 $NaLa_9(GeO_4)_6O_2$  apatite, single-crystal growth and structure determination, 139, 304

 $Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3$  perovskite series, structural study, 138, 307

Sr<sub>2</sub>LaMn<sub>2</sub>O<sub>7</sub>, Ruddlesden-Popper phases, HRTEM study, **138**, 135

 $\mathrm{Sr}_{1-x}\mathrm{La}_x\mathrm{Mo}_5\mathrm{O}_8$  (0  $\leq x \leq$  1), synthesis and metallic properties, 138, 7 Lattice energy

in modeling of thermal decomposition of solids

alkaline earth carbonates, 137, 332

alkaline earth peroxides, 137, 346

Lead

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub> single crystals heavily substituted with, two-phase microstructures generating efficient pinning centers, 138, 98

Ca–Pb hydroxyapatites, thermal and structural properties and oxidation of methane, 135, 86

KPb<sub>4</sub>(VO<sub>4</sub>)<sub>3</sub> with anion-deficient apatite structure, 141, 373

NaPb<sub>4</sub>(VO<sub>4</sub>)<sub>3</sub> with anion-deficient apatite structure, **141**, 373

Pb<sub>1-x</sub>In<sub>x</sub>Te single crystals, point defect clusters revealed by X-ray diffuse scattering method, 137, 119

Pb<sub>2</sub>MgW<sub>x</sub>Te<sub>(1-x)</sub>O<sub>6</sub> solid solution, dielectric measurements, DSC, structure, and phase diagram, **139**, 332

 $Pb_x(PO_2)_4(WO_3)_{2m}$  ( $6 \le m \le 10$ ) bronze, characterization, **139**, 362  $Pb_2Re_2O_{7-x}$  pyrochlores, synthesis and structure, **138**, 220

Pb<sup>II</sup>Sn<sup>IV</sup>(PO<sub>4</sub>)<sub>2</sub>, structure and stereochemical activity of Pb<sup>II</sup> lone pair, 137, 283

(PbS)<sub>1.18</sub>(TiS<sub>2</sub>)<sub>2</sub>, nanocomposites with poly(ethylene oxide), synthesis and characterization, **141**, 323

PdTeI, single-crystal X-ray diffraction and electronic band structure studies, 137, 206

Sr<sub>2-x</sub>Pb<sub>x</sub>(VO)(VO<sub>4</sub>)<sub>2</sub> solid solutions, structural, IR, and magnetic studies, **140**, 417

#### Lewisite

mixed valency, cation site splitting, and symmetry reduction, 141, 562 Liquid-mix disorder

ScMnO<sub>3</sub> crystalline solids, 141, 78

### Lithium

 $Ba_3Li_2Cl_2(MoO)_4(PO_4)_6$  with intersecting tunnel structure, synthesis, 141. 587

CsLiSO<sub>4</sub>, ABW-type, phase transition in, symmetry analysis and atomic distortions. **138**, 267

 $K_{1-x}Li_xMnF_3$  single crystal, phase transition and structure in range 100-298 K, 137, 71

 $KLiNb_5O_9(PO_4)_3$ , synthesis and intersecting tunnel structure related to  $ReO_3$ , 136, 305

KLi<sub>1-x</sub>(Nb,W)<sub>5</sub>O<sub>9</sub>(PO<sub>4</sub>)<sub>3</sub>, synthesis and intersecting tunnel structure related to ReO<sub>3</sub>, **136**, 305

 $\text{La}_2\text{Li}_{1/2}M_{1/2}O_4$  (M(III) = Co,Ni,Cu), ordered K<sub>2</sub>NiF<sub>4</sub> structure and bonding properties of  $MO_6$  polyhedra in related compounds, 138, 18

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$  system, synthesis, phase diagram, and conductivity, **140**, 377

 $La_4NiLiO_8$ , detection in  $La_2O_3$ -NiO-Li $_2O$  system at 700, 800, and 900°C, **141**, 457

 $La_2O_3$ -NiO- $Li_2O$  system, phase equilibria at 700, 800, and 900°C, **141**, 457

LiCd, pressure-induced phase transformation from NaTl-type phases to  $\beta$ -brass-type alloys, 137, 104

## LiCoO<sub>2</sub>

low-temperature samples and acid-delithiated products, structural features. 140, 116

single crystals, synthesis and structure refinement, letter to editor, **141**, 298

Li<sub>1-x</sub>Fe<sub>5+x</sub>O<sub>8</sub>, obtained by solvothermal reaction, magnetic properties, **141**, 554

## LiFeO<sub>2</sub>

obtained by hydrothermal reaction, magnetic properties, **141**, 554 prepared by hydrothermal reaction and postannealing method, magnetic properties, effect of cation arrangement, **140**, 159

 $\text{Li}_3\text{Fe}_2(XO_4)_3$  (X = P,As), cathode materials for rechargeable lithium batteries, 3D framework structure, 135, 228

LiF-WO<sub>3</sub>, ammonolysis, *in situ* X-ray diffraction study: detection and crystal structure of Li<sub>0.84</sub>W<sub>1.16</sub>N<sub>2</sub>, **138**, 154

Li<sub>1-x</sub>H<sub>x</sub>IO<sub>3</sub>-type complex crystals, structure–property relationships, 135, 121

 $LiI_3Bi_2Sr_2CaCu_2O_8$  layered cuprate, synthesis and characterization, 141, 452

LiIn, pressure-induced phase transformation from NaTl-type phases to  $\beta$ -brass-type alloys, 137, 104

Li-inserted  $In_{16}Fe_8S_{32}$ , structure and electrochemical behavior, **138**, 193  $Li_xK_{1-x}Bi_3S_5$ , preparation, letter to editor, **136**, 328

LiLaP<sub>4</sub>O<sub>12</sub>, crystalline and glass modifications, vibronic transitions of Gd<sup>3+</sup> and Eu<sup>3+</sup> in, 136, 206

Li-Mn-O spinels

oxygen nonstoichiometry, powder neutron diffraction study, **135**, 132 synthesis and structure, **139**, 290

LiMn<sub>2</sub>O<sub>4</sub>, local structure, X-ray absorption fine structure study, 141, 294

LiNbO<sub>3</sub> solid solutions with Mn<sup>2+</sup>, preparation and characterization, 140, 168

LiNi(AsO<sub>4</sub>), spectroscopic and magnetic properties and crystal structure refinement, 141, 508

Li<sub>x</sub>Ni<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> system, structural, electrochemical, and physical properties, **136**, 8

LiNiO<sub>2</sub>, Jahn–Teller distortion in, *in situ* X-ray absorption fine structure analysis, letter to editor, **140**, 145

 $\text{Li}_2\text{O-Fe}_2\text{O}_3\text{-TiO}_2$  system, nonstoichiometric Li-pseudobrookite(ss) in, **141**, 221

 $\text{Li}_9M_3(\text{P}_2\text{O}_7)_3(\text{PO}_4)_2$  (M = Al,Ga,Cr,Fe), crystal structure and cation transport properties, 138, 32

LiTaO<sub>3</sub> solid solutions with Mn<sup>2+</sup>, preparation and characterization, 140, 168

Li-Ti-O system, phases formed under reducing conditions, 138, 74

LiTi<sub>2</sub>O<sub>4</sub> and Li<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> ramsdellites linked in solid solutions, X-ray and neutron diffraction studies, **141**, 365

 $(\text{Li}_x \text{V}_{1-x})_3 \text{BO}_5$  ( $x \simeq 0.3$ ), disordered S=1 system, crystal structure and electronic state, **141**, 418

δLi<sub>x</sub>V<sub>2</sub>O<sub>5</sub>, structural comparison to MgV<sub>2</sub>O<sub>5</sub>, **136**, 56

 $\text{Li}_{0.84}W_{1.16}N_2$ , synthesis by ammonolysis of LiF-WO<sub>3</sub> and crystal structure, 138, 154

LiYO<sub>2</sub> doped with Eu<sup>3+</sup>, monoclinic and tetragonal structures, refinement, 137, 242

LiZnPO<sub>4</sub>, polymorph with cristobalite-type framework topology, 138, 126

rechargeable batteries,  $\text{Li}_3\text{Fe}_2(XO_4)_3$  (X = P,As) cathode materials for, 3D framework structure, 135, 228

substitution for Na<sup>+</sup> in Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, associated transition from garnet to alluaudite structure, **137**, 112

ZrNCl doped with, superconducting, electronic band structure, **138**, 207 Lone pair electrons

Pb<sup>2+</sup> 6s<sup>2</sup>, stereochemical effect in Sr<sub>2-x</sub>Pb<sub>x</sub>(VO)(VO<sub>4</sub>)<sub>2</sub> solid solutions, **140**, 417

Pb<sup>II</sup>, stereochemical activity in Pb<sup>II</sup>Sn<sup>IV</sup>(PO<sub>4</sub>)<sub>2</sub>, **137**, 283

Sb(III) cations, stereochemical activity in [(CH $_3$ NH $_3$ )<sub>1.03</sub>K $_{2.97}$ ] Sb $_{12}$ S $_{20} \cdot 1.34$ H $_2$ O, **140**, 387

Luminescence spectroscopy

Eu and La in codoped CaS, 138, 149

TiO<sub>2</sub> ultrafine particles: electronic state characterization, **139**, 124 Lutetium

 $KLu^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf$ ), synthesis and crystal structure, 139, 248

Lu<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424

 $LuBa_2Fe_3O_{8+x}$  phases, powder neutron and X-ray diffraction studies, 136, 21

Lu(ClO<sub>4</sub>)<sub>3</sub>, crystalline and molecular structures, 139, 259

Lu<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424

Lu<sub>2</sub>W<sub>3</sub>O<sub>12</sub>, negative thermal expansion, **140**, 157

M

Magnesium

Ba<sub>2</sub>Mg<sub>6</sub>Al<sub>28</sub>O<sub>50</sub>, crystal structure, **136**, 258

BaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, Al-rich part

phase relationships, 136, 253

related compound Ba<sub>2</sub>Mg<sub>6</sub>Al<sub>28</sub>O<sub>50</sub>, crystal structure, 136, 258

hydrotalcite-derived MgAlO oxides calcined at varying temperatures, structural and acid/base properties, 137, 295

KMgPO<sub>4</sub>, crystal chemistry and polymorphism, 136, 175

```
(K<sub>x</sub>Na<sub>1-x</sub>)MgF<sub>3</sub> perovskites, crystal chemistry and phase transitions in
        P-T-X space, 141, 121
  LaGaO<sub>3</sub> perovskite-type oxide-ion conductor doped with, wet chemical
        synthesis, 136, 274
  La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85}, high-temperature powder neutron diffrac-
        tion, 139, 135
  Mg<sup>2+</sup>, α-Fe<sub>2</sub>O<sub>3</sub> doped with, structural characterization, 140, 428
  MgCl<sub>2</sub>, structure candidates, determination, 136, 233
  MgF<sub>2</sub>, structure candidates, determination, 136, 233
  (Mg_xFe_{1-x})_{3-\delta}O_4, composition (x) dependence of nonstoichiometry (\delta)
        measurement, 139, 128
  Mg<sub>3</sub>N<sub>2</sub>, vibrational spectra and decomposition, 137, 33
  Mg<sub>5</sub>Nb<sub>4</sub>O<sub>15</sub> and Mg<sub>5</sub>Ta<sub>4</sub>O<sub>15</sub>, crystal structure refinement by Rietveld
        analysis of neutron powder diffraction data, 137, 359
  MgO<sub>2</sub>, structure and stability, ab initio quantum mechanical study, 140, 103
  MgO-Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> systems, XRD and solid-state NMR studies, 135, 96
  MgO-MnO solid solutions, energy of mixing, ab initio Hartree-Fock
        study, 137, 261
  MgO-SiO<sub>2</sub> systems, mechanochemical reactions, role of water, 138, 169
  MgTi<sub>2</sub>O<sub>5</sub>, pseudobrookite-type, crystal chemistry of cation order-dis-
        order in, 138, 238
  MgV_2O_5, structural comparison to \delta Li_xV_2O_5, 136, 56
  Pb<sub>2</sub>MgW<sub>x</sub>Te<sub>(1-x)</sub>O<sub>6</sub> solid solution, dielectric measurements, DSC,
        structure, and phase diagram, 139, 332
Magnetic properties
   BaCo_{1-x}Cu_xS_{2-y} layered sulfide, 138, 111
  Ba<sub>2</sub>Cu<sub>3</sub>O<sub>4</sub>Cl<sub>2</sub> and Ba<sub>3</sub>Cu<sub>2</sub>O<sub>4</sub>Cl<sub>2</sub>, 141, 378
  REBa_2Fe_3O_{8+w} (RE = Dy,Er,Y) triple perovskites, <sup>57</sup>Fe Mössbauer
        study, 139, 168
  BaHfN<sub>2</sub>, 137, 62
  BaHf_{1-x}Zr_xN_2 solid solution, 137, 62
  Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, heavily Pb-substituted single crystals with two-
        phase microstructures generating efficient pinning centers, 138, 98
  Ca_3Co_{1-x}B_{1+x}O_6 (B = Ir,Ru) one-dimensional oxides, 140, 14
  CaVO_{3-\delta} oxygen-deficient phases, 135, 36
  Ce-Al-(Si,Ge) systems, 137, 191
  CsMnHP<sub>3</sub>O<sub>10</sub>, 141, 160
  Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub>, effects of cationic substitution, 141, 546
  ε-Fe<sub>2</sub>O<sub>3</sub>, 139, 93
  Fe_8V_{10}W_{16}O_{85} low-spin d^5 system, 137, 223
  LaBa_2Fe_3O_{8+w} ( -0.20 < w < 0.83), cubic perovskite-type phase, <sup>57</sup>Fe
        Mössbauer spectroscopy, 138, 87
  La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3 perovskites, 138, 226
  La<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>, 141, 411
  La_4Co_3O_{10+\delta} (0.00 \leq \delta \leq 0.30), 141, 212
  LaCrS<sub>3</sub> prepared by high-pressure synthesis, 139, 233
  La_{1-x-y}A_xMnO_{3-\delta} (A = Na,K), 137, 19
  La<sub>2</sub>NiO<sub>4.16</sub>, 138, 260
  La_{2-x}Pr_xNiO_{4+\delta}, 138, 260
  La_{1-x}Sr_xCrO_3 (x = 0 ~ 0.25) perovskites, 141, 404
  \text{Li}_{1-x}\text{Fe}_{5+x}\text{O}_8 obtained by solvothermal reaction, 141, 554
  LiFeO2
     prepared by hydrothermal reaction, 141, 554
     prepared by hydrothermal reaction and postannealing method, effect
        of cation arrangement, 140, 159
  Li<sub>x</sub>Ni<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> system, 136, 8
  MnTi_{1-x}Nb_xO_3 system, 136, 115
  NaLnTiO_4 (Ln = Sm,Eu,Gd) layered perovskites, 138, 342
  Nd_{2-x}Sr_xNiO_v, hole-doped and reduced compounds, 140, 278
  Ln_{1-x}Nd_xTiO_3 (Ln = Ce,Pr; 0 \le x \le 1), letter to editor, 137, 181
  MNi(AsO_4) (M = Li,Na), 141, 508
  (Ni_{6-x}Cu_{x})MnO_{8}, 135, 322
  Pr<sup>4+</sup> doped in BaSnO<sub>3</sub>, Ba<sub>2</sub>SnO<sub>4</sub>, and Ba<sub>3</sub>Sn<sub>2</sub>O<sub>7</sub>, EPR study, 138,
        329
```

```
ScNiP, 137, 218
  R_3Si_2C_2 (R = Y,La-Nd,Sm,Gd-Tm), 138, 201
  Sm_{1-x}TiO_3 (x = 0.03, 0.05, 0.10), 141, 262
  Sr<sub>39</sub>Co<sub>12</sub>N<sub>31</sub>, 141, 1
  Sr_{1-x}La_xMo_5O_8 \ (0 \le x \le 1), 138, 7
  Sr_{2-x}Pb_x(VO)(VO_4)_2 solid solutions, 140, 417
  Sr_3MRhO_6 (M = Sm_2Eu_3Tb_2Dy_3Ho_3Er_3Yb) with K_4CdCl_6 structure-
        type, 139, 79
  Ti<sub>3</sub>O<sub>5</sub>, 136, 67
  U<sub>3</sub>Te<sub>5</sub>, 139, 356
  M(VOPO_4)_2 \cdot 4H_2O (M = Co(II), Ni(II)) layered compounds with dis-
        tinct magnetic linear trimers, 137, 77
Magnetic structure
  CsMnHP<sub>3</sub>O<sub>10</sub>, 141, 160
  La<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>, crystal structure and magnetic properties, 141, 411
  RPtAl (R = Ce, Pr, Nd), 140, 233
  Sm<sub>0.97</sub>TiO<sub>3</sub>, 141, 262
  Sr<sub>3</sub>Mn<sub>2</sub>O<sub>7</sub>, letter to editor, 141, 599
Magnetic susceptibility
  Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> and Bi<sub>2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub>, 139, 1
  CrTa<sub>2</sub>O<sub>6</sub> trirutile oxide based on Cr<sup>2+</sup>, 140, 7
  EuTIn (T = Zn,Pd,Pt,Au) intermetallic compounds, 137, 174
  GdAgGe, GdAuGe, GdAu_{0.44(1)}In_{1.56(1)}, and \ GdAuIn \ antiferromagnets,
  (La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3, 140, 431
  La<sub>x</sub>Mo<sub>6</sub>Se<sub>8</sub> Chevrel-phase superconductor, 136, 160
  \text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta} (0.5 \leq x \leq 0.9) perovskite, 139, 388
  La_{1-x}Sr_xCrO_3 (x = 0 ~ 0.25) perovskites, 141, 404
  Mn<sub>11</sub>Ta<sub>4</sub>O<sub>21</sub>, 137, 276
  NdMo<sub>6</sub>O<sub>12</sub>, ordered hollandite-type compound, 136, 87
  Pb_x(PO_2)_4(WO_3)_{2m} (6 \leq m \leq 10) bronze, 139, 362
  SrNb<sub>2</sub>S<sub>5</sub> and SrTa<sub>2</sub>S<sub>5</sub>, 135, 325
Magnetism
  frustrated, in compounds with YbFe<sub>2</sub>O<sub>4</sub>-type structure, 140, 337
Magnetite
  Ni-Fe alloy/magnetite composites, synthesis and microstructure, 135,
        210
Magnetization
  NbO(O<sub>2</sub>)<sub>0.5</sub>PO<sub>4</sub>·2H<sub>2</sub>O, 137, 289
Magnetoplumbite-type compounds
   BaGa<sub>12</sub>O<sub>19</sub>, preparation and crystal structure, 136, 120
Magnetoresistance effects
  in self-doped La<sub>0.936</sub>Mn<sub>0.982</sub>O<sub>3</sub> single crystals, letter to editor, 136, 322
Manganese
  Bi_{3.6}Sr_{12.4}Mn_8O_{28+\delta}, with tubular structure, synthesis and crystal
         chemistry, 138, 278
  CaO-MnO solid solutions, energy of mixing, ab initio Hartree-Fock
        study, 137, 261
```

(Ca<sub>1-x</sub>Sr<sub>x</sub>)MnO<sub>3</sub>, Mn-O-Mn angles in, relationship to electrical prop-

Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub>, electronic and magnetic properties, effects of

 $K_{1-x}Li_xMnF_3$  single crystal, phase transition and structure in range

KMnO<sub>4</sub>, reduction with KBH<sub>4</sub> in aqueous solutions: synthesis of man-

(La<sub>0.1</sub>Ca<sub>0.9</sub>)(Mn<sub>1-x</sub>Ge<sub>x</sub>)O<sub>3</sub>, electrical properties, effect of Ge<sup>4+</sup>, 140,

La<sub>2/3</sub>Ca<sub>1/3</sub>Mn<sub>1-x</sub>In<sub>x</sub>O<sub>3</sub> perovskites, structural, magnetic, and electrical

La<sub>0.2</sub>Ca<sub>0.8</sub>MnO<sub>3</sub>, structural and morphological changes associated with

La<sub>1-x</sub>Ca<sub>x</sub>MnO<sub>3</sub>, structure, stoichiometry, and phase purity, **140**, 320

CsMnHP<sub>3</sub>O<sub>10</sub>, magnetic structure and properties, 141, 160

erties, 137, 82

100-298 K, 137, 71

431

ganese oxides, 137, 28

properties, 138, 226

charge ordering, 140, 331

cationic substitution, 141, 546

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$  system, synthesis, phase diagram, and conductivity, **140**, 377

La<sub>0.936</sub>Mn<sub>0.982</sub>O<sub>3</sub>, magnetoresistance effects in self-doped single crystals, letter to editor, 136, 322

 $\text{La}_{1-x-y}A_x\text{MnO}_{3-\delta}$  (A=Na,K), synthesis, structure, and properties, 137, 19

La<sub>12</sub>Mn<sub>2</sub>Sb<sub>30</sub> alloy, electronic structure, **139**, 8

 $LaNi_{1-x}Mn_xO_{2.5+\delta}$ , vacancy-ordered phase, synthesis and crystal structure, **135**, 103

La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3.00</sub>, oxidation kinetics, *in situ* powder diffraction studies, **141**, 235

Li-Mn-O spinels

oxygen nonstoichiometry, powder neutron diffraction study, **135**, 132 synthesis and structure, **139**, 290

LiMn<sub>2</sub>O<sub>4</sub>, local structure, X-ray absorption fine structure study, **141**, 294

manganese oxides, synthesis by reduction of KMnO<sub>4</sub> with KBH<sub>4</sub> in aqueous solutions, 137, 28

MgO-MnO solid solutions, energy of mixing, *ab initio* Hartree-Fock study, **137**, 261

 $Mn^{2+}$ 

AlF<sub>3</sub> doped with, ESR and *ab initio* quantum chemical studies, **139**, 27 solid solutions of LiNbO<sub>3</sub> and LiTaO<sub>3</sub> with, preparation and characterization, **140**, 168

 $Ln_{0.5}A_{0.5}$ MnO<sub>3</sub> (Ln = Nd,Gd,Y; A = Ca,Sr), charge-ordered states, distinction based on chemical melting, 137, 365

 $Ln_{1-x}A_x$ MnO<sub>3</sub> (Ln = La, Pr, Nd; A = Ca, Sr), charge-ordered, effect of internal pressure, letter to editor, **135**, 169

MnO-NiO solid solutions, energy of mixing, ab initio Hartree-Fock study, 137, 261

Mn(ReO<sub>4</sub>)<sub>2</sub> anhydrous perrhenates, crystal structure, 138, 232

Mn(ReO<sub>4</sub>)<sub>2</sub>·2H<sub>2</sub>O, crystal structure, 138, 232

 $Mn_{11}Ta_4O_{21}$ , structure and magnetic susceptibility and refinement of  $Mn_4Ta_2O_9$  structure, 137, 276

MnTi<sub>1-x</sub>Nb<sub>x</sub>O<sub>3</sub> system, magnetic properties, 136, 115

Mn<sub>0.15</sub>V<sub>0.3</sub>Mo<sub>0.7</sub>O<sub>3</sub>, characterization, **138**, 347

(Ni<sub>6-x</sub>Cu<sub>x</sub>)MnO<sub>8</sub>, crystal structure and magnetic properties, **135**, 322 ScMnO<sub>3</sub> crystalline solids, liquid-mix disorder in, **141**, 78

 $Sr_2LnMn_2O_7$  (Ln = Y,La,Nd,Eu,Ho), Ruddlesden-Popper phases, HRTEM study, 138, 135

Sr<sub>3</sub>Mn<sub>2</sub>O<sub>7</sub>, crystal and magnetic structures, letter to editor, **141**, 599 Zn–Mn spinel ferrites, nanocrystals obtained by high-energy ball milling, chemical homogeneity, **141**, 10

Mechanical properties

activated sintered boron carbide-based materials, 137, 1

Mechanochemical activation

MgO-SiO<sub>2</sub> systems, role of water, 138, 169

 $(SeO_2 + Na_2CO_3)$  mixture, for synthesis of  $Na_2SeO_3$  in vibrational mill, 135, 256

Mechanochemical synthesis

Fe-S materials, 138, 114

Fe<sub>2.5</sub>Ti<sub>0.5</sub>O<sub>4</sub> nanocrystals, **139**, 66

low-energy, Ag and Cu metals from hemioxides, 136, 51

zinc ferrite, associated structural disorder, 135, 52

Zn-Mn spinel ferrite nanocrystals obtained by, chemical homogeneity, **141**, 10

Mercury

 $A_2$ HgP<sub>2</sub>Se<sub>6</sub> (A = K,Rb,Cs), synthesis, structure, and optical and thermal properties, **138**, 321

Hg<sub>x</sub>TiS<sub>2</sub>, host-layer restacking in, mechanism, **141**, 330

Metal-insulator transitions

 $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$ , **140**, 431

 $La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3$  perovskites, **138**, 226

in LaNi<sub>0.95</sub> $M_{0.05}$ O<sub>3</sub> (M = Mo, W, Sb, Ti, Cu, Zn) perovskites, 136, 313

Metal-semiconductor transitions

 $Tl_2Ru_2O_{7-\delta}$  pyrochlore synthesized at high pressure, **140**, 182 Metastability

AgI:Ag<sub>2</sub>MoO<sub>4</sub> system, **140**, 91

Methane

oxidation on calcium-lead hydroxyapatites, 135, 86

Methanol

oxidation to formaldehyde over Mo catalysts, Mo<sub>2</sub>O<sub>5</sub>(OCH<sub>3</sub>)<sub>2</sub> and Mo<sub>2</sub>O<sub>5</sub>(OCH<sub>3</sub>)<sub>2</sub>·2CH<sub>3</sub>OH compounds modeling, structure, **136**, 247

N-Methylethylenediamine

zirconium phosphate fluorides templated with, hydrothermal synthesis and crystal structure, **135**, 293

MIL-5

hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89

Molecular structure

 $Ln(ClO_4)_3$  (Ln = La, Ce, Pr, Sm, Eu, Ho, Er, Tm, Lu), 139, 259

Sn(ND<sub>3</sub>)<sub>2</sub>F<sub>4</sub>, 138, 350

Molybdenum

AgI:Ag<sub>2</sub>MoO<sub>4</sub> system, phase diagram: devitrification and metastability, 140. 91

 $Ag_{0.7}Mo_3O_7(PO_4)$  bronze built up from ReO<sub>3</sub>-type slabs, synthesis, structure, and properties, **140**, 128

Ba<sub>3</sub>Li<sub>2</sub>Cl<sub>2</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>6</sub> with intersecting tunnel structure, synthesis, 141, 587

Ba<sub>2</sub>MoO<sub>3</sub>F<sub>4</sub>, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd REDOR NMR study, **140**, 285

Bi(Bi<sub>12-x</sub>Te<sub>x</sub>O<sub>14</sub>)Mo<sub>4-x</sub>V<sub>1+x</sub>O<sub>20</sub> ( $0 \le x \le 2.5$ ) solid solutions, synthesis and structural evolution, **139**, 185

Bi<sub>2</sub>O<sub>3</sub>-MoO<sub>3</sub>, review, **137**, 42

Ce-Mo ultrafine particles, preparation and characterization, 140, 354

 $Cr_{2-2x}Mo_xO_3$ , preparation and characterization, 140, 350

Cu<sub>2</sub>Th<sub>4</sub>(MoO<sub>4</sub>)<sub>9</sub>, structural skeleton, 136, 199

DySr<sub>2</sub>Cu<sub>2.7</sub>Mo<sub>0.3</sub>O<sub>7.2</sub>, crystal structure, 141, 522

Fe<sub>2</sub>Mo<sub>1-x</sub>Ti<sub>x</sub>O<sub>4</sub> spinel oxides, electrical resistivity and thermoelectric power measurements, **140**, 56

H<sub>x</sub>MoO<sub>3</sub> bronze, protonic locations in, 141, 255

hydrated molybdenum bronze, Cs/Na ion exchange and synthesis of cesium molybdenum bronze at low temperature, 137, 12

La-Mo ultrafine particles, preparation and characterization, 140, 354

La<sub>x</sub>Mo<sub>6</sub>Se<sub>8</sub> Chevrel-phase superconductor

correlation of  $T_{\rm c}$  and interatomic distances, 136, 151

physical and superconducting properties, 136, 160

 $LaNi_{0.95}Mo_{0.05}O_3$  perovskites, metal–insulator transitions in, **136**, 313  $Mn_{0.15}V_{0.3}Mo_{0.7}O_3$ , characterization, **138**, 347

Mo<sup>v</sup>, in tetragonal and monoclinic phases of zirconia, EPR study, **136**, 263

Mo<sub>2</sub>C 14 nm in average size supported on high specific surface area carbon material, synthesis, **141**, 114

 $Mo_2O_5(OCH_3)_2$  and  $Mo_2O_5(OCH_3)_2 \cdot 2CH_3OH$ , structural analysis, 136, 247

AMoOPO<sub>4</sub>Cl (A = K,Rb), synthesis and layer structure, 137, 214

 $Al_{13}O_4(OH)_{24}(H_2O)_{12}^{7+}$  encapsulation into, and Rietveld structural characterization, 139, 22

nanocrystals, solvothermal synthesis from  $MoO_3$  and elemental sulfur, 141, 270

NaMoO<sub>3</sub>F, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd RE-DOR NMR study, **140**, 285

 $NdMo_6O_{12}$ , ordered hollandite-type compound, synthesis, crystal structure, and characterization, 136, 87

Rb<sub>2</sub>MoO<sub>2</sub>As<sub>2</sub>O<sub>7</sub>, preparation and crystal structure, 141, 500

 $Sr_{1-x}La_xMo_5O_8$  (0  $\leq x \leq$  1), synthesis and metallic properties, 138, 7

 $Tl_2(MoO_3)_3PO_3CH_3$ , synthesis, structure, and properties, **138**, 365  $TlNbMoO_6$  ceramics, structural and dielectric properties, **141**, 50  $ZrW_{2-x}Mo_xO_8$ , low-temperature synthesis, **139**, 424

Mosaic crystals

vanadyl pyrophosphate obtained by oriented nucleation and growth, 137, 311

Mössbauer spectroscopy

 $^{151}E_{1}$ 

EuTIn (T = Zn,Pd,Pt,Au) intermetallic compounds, 137, 174 NaEuTiO<sub>4</sub> layered perovskite, 138, 342

<sup>57</sup>F

 $REBa_2Fe_3O_{8+w}$  triple perovskites (RE=Dy,Er,Y), 139, 168 cubic perovskite-type phase  $LaBa_2Fe_3O_{8+w}$  ( -0.20 < w < 0.83), 138, 87

LiFeO<sub>2</sub> prepared by hydrothermal reaction and postannealing method, **140**, 159

Li-inserted In<sub>16</sub>Fe<sub>8</sub>S<sub>32</sub>, structure and electrochemical behavior, **138**, 193

ε-Fe<sub>2</sub>O<sub>3</sub>, **139**, 93

Fe<sub>2.5</sub>Ti<sub>0.5</sub>O<sub>4</sub> nanocrystals synthesized by soft chemistry and high-energy ball milling, **139**, 66

<sup>155</sup>Gd, GdAgGe, GdAuGe, GdAu<sub>0.44(1)</sub>In<sub>1.56(1)</sub>, and GdAuIn antiferromagnets, **141**, 352

NaFe<sub>3.67</sub>(PO<sub>4</sub>)<sub>3</sub>, **139**, 152

Sn<sup>4+</sup>-doped indium oxide and In<sub>4</sub>Sn<sub>3</sub>O<sub>12</sub>, **135**, 140

N

#### Nanocomposites

poly(ethylene oxide) nanocomposites of misfit layer chalcogenides, synthesis and characterization, **141**, 323

Nanocrystals

Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>, preparation and characterization, 141, 70

copper-doped cerium oxide, emf measurements, 140, 295

γ-Fe<sub>2</sub>O<sub>3</sub>, hydrothermal synthesis and characterization, 137, 185

Fe<sub>2.5</sub>Ti<sub>0.5</sub>O<sub>4</sub>, obtained by mechanosynthesis and soft chemistry, structure, cation distribution, and properties, **139**, 66

 $MoS_2$ , solvothermal synthesis from  $MoO_3$  and elemental sulfur, 141, 270

 $SnO_2$ , structural characterization by X-ray and Raman spectroscopy, 135, 78

tetragonal polycrystalline zirconia, doped and undoped, synthesis by spray pyrolysis, **141**, 191

Zn-Mn spinel ferrites obtained by high-energy ball milling, chemical homogeneity, **141**, 10

Negative thermal expansion

Lu<sub>2</sub>W<sub>3</sub>O<sub>12</sub>, 140, 157

NbOPO<sub>4</sub>, tetragonal polymorph, letter to editor, 141, 303

Sc<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>, 137, 148

Neodymium

 $KNd^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf$ ), synthesis and crystal structure, 139, 248

KNd<sub>3</sub>Te<sub>8</sub>, flat Te nets of, site occupancy wave and infinite zigzag  $(Te_2^{2-})_n$  chains in, 135, 111

La<sub>2-x</sub>Nd<sub>x</sub>CuO<sub>4</sub> system, structural transitions, **140**, 345

Nd<sup>3+</sup>, doping of Na<sub>2</sub>SO<sub>4</sub>, effect on electrical conductivity, **138**, 369 NdAlO<sub>3</sub> perovskite, stability, calorimetric study, **141**, 424

 $Nd_2Ba_2Cu_2Ti_2O_{11-\delta}$ , sol-gel synthesis and simultaneous oxidation, 138, 141

 $NdBa_2Fe_3O_{8+x}$  phases, powder neutron and X-ray diffraction studies, 136. 21

Nd<sub>4</sub>Cu<sub>2</sub>O<sub>7</sub>, cooperatively distorted T' type structure, **136**, 137

NdGaO<sub>3</sub> perovskite, stability, calorimetric study, 141, 424

 $Nd_{0.5}A_{0.5}MnO_3$  (A = Ca,Sr), charge-ordered states, distinction based on chemical melting, 137, 365

 $Nd_{1-x}A_xMnO_3$  (A = Ca,Sr), charge-ordered, effect of internal pressure, letter to editor, 135, 169

NdMo<sub>6</sub>O<sub>12</sub>, ordered hollandite-type compound, synthesis, crystal structure, and characterization, **136**, 87

 ${\rm Nd_4Ni_3O_8},$  crystal structure and defects, neutron diffraction and TEM studies, **140**, 307

 $Nd_6Ni_{2-x}Si_3$  and  $Nd_{42}Ni_{22-x}Si_{31}$ , crystal structure and chemistry, 137, 302

Nd<sub>2</sub>O<sub>3</sub>-Co-Co<sub>2</sub>O<sub>3</sub> system, thermogravimetric study at 1100 and 1150°C, **137**, 255

NdPtAl, magnetic structure, 140, 233

Nd<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201

Nd<sub>2-x</sub>Sr<sub>x</sub>NiO<sub>y</sub>, hole-doped and reduced compounds, nickel oxidation state and magnetic properties, **140**, 278

 $Ln_{1-x}Nd_xTiO_3$  ( $Ln = Ce,Pr; 0 \le x \le 1$ ), magnetic studies, letter to editor, 137, 181

Sr<sub>2</sub>NdMn<sub>2</sub>O<sub>7</sub>, Ruddlesden–Popper phases, HRTEM study, **138**, 135 Neutron diffraction, *see also* Powder neutron diffraction

BICOVOX.15, single-crystal structural study at room temperature, **141**,

 $LiTi_2O_4$  and  $Li_2Ti_3O_7$  ramsdellites linked in solid solutions, 141, 365  $Sm_{0.97}TiO_3$ , short-wavelength study on single crystals, 141, 262

Nickel

(Co,Ni,Cu)<sub>1+x</sub>(Ge,Sn) B8-type phases, modulated structures and diffuse scattering, computer simulation, **135**, 269

 $\text{Eu}_{2-x}\text{Sr}_x\text{NiO}_{4+\delta}$ , preparation, crystal structure, and reducibility, **141**, 99

 $K_2NiF_4$ , structure,  $La_2Li_{1/2}M_{1/2}O_4$  (M(III) = Co,Ni,Cu) with variant of 138. 18

La<sub>2</sub>Li<sub>1/2</sub>Ni<sub>1/2</sub>O<sub>4</sub>, ordered K<sub>2</sub>NiF<sub>4</sub> structure and bonding properties of MO<sub>6</sub> polyhedra in related compounds, 138, 18

La<sub>4</sub>NiLiO<sub>8</sub>, detection in La<sub>2</sub>O<sub>3</sub>-NiO-Li<sub>2</sub>O system at 700, 800, and 900°C, **141**, 457

LaNi<sub>1-x</sub> $M_x$ O<sub>2.5+ $\delta$ </sub> (M = Mn,Fe,Co), vacancy-ordered phase, synthesis and crystal structure, **135**, 103

LaNi<sub>0.95</sub>M<sub>0.05</sub>O<sub>3</sub> (M = Mo,W,Sb,Ti,Cu,Zn) perovskites, metal-insulator transitions in, **136**, 313

La<sub>2</sub>NiO<sub>4.16</sub>, magnetic properties, **138**, 260

La<sub>2</sub>O<sub>3</sub>-NiO-Li<sub>2</sub>O system, phase equilibria at 700, 800, and 900°C, **141**, 457

 $La_{2-x}Pr_xNiO_{4+\delta}$ , magnetic properties, **138**, 260

LiNi(AsO<sub>4</sub>), spectroscopic and magnetic properties and crystal structure refinement, 141, 508

Li<sub>x</sub>Ni<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> system, structural, electrochemical, and physical properties, 136, 8

LiNiO<sub>2</sub>, Jahn-Teller distortion in, in situ X-ray absorption fine structure analysis, letter to editor, 140, 145

MnO-NiO solid solutions, energy of mixing, *ab initio* Hartree-Fock study, **137**, 261

NaNi(AsO<sub>4</sub>), spectroscopic and magnetic properties, 141, 508

 $Nd_4Ni_3O_8,$  crystal structure and defects, neutron diffraction and TEM studies,  $\boldsymbol{140,\,307}$ 

 $Nd_6Ni_{2-x}Si_3$  and  $Nd_{42}Ni_{22-x}Si_{31}$ , crystal structure and chemistry, 137, 302

Nd<sub>2-x</sub>Sr<sub>x</sub>NiO<sub>y</sub>, hole-doped and reduced compounds, nickel oxidation state and magnetic properties, **140**, 278

NiAl<sub>2</sub>O<sub>4</sub>, formation from  $\alpha$ - and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>-suppported oxides, 135, 59 Ni<sub>y</sub>(Cr<sub>2-2x</sub>In<sub>2x</sub>)<sub>1-y</sub>S<sub>3-y</sub> spinel, decomposition and X-ray powder dif-

fraction, 136, 193 ( $Ni_{6-x}Cu_x$ )MnO<sub>8</sub>, crystal structure and magnetic properties, 135, 322 Ni-Fe alloy/magnetite composites, synthesis and microstructure, 135,

Ni<sub>1+x</sub>Ge, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402

 $Ni_{1-x}O$ 

Al-doped, spinel precipitation in, 140, 38

with dissolved Zr<sup>4+</sup>, defect clusters and superstructures, **140**, 361

Ni(ReO<sub>4</sub>)<sub>2</sub> anhydrous perrhenates, crystal structure, **138**, 232

 $Ni_{1+x}Sn$ , nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402

 $Ni_{1+m}Sn_{1-x}P_x$ , B8-type solid solutions, Sn/P and interstitial Ni ordering in, electron diffraction study, 136, 125

Ni<sub>0.25</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250

Ni(II)(VOPO<sub>4</sub>)<sub>2</sub>·4H<sub>2</sub>O, layered compounds with distinct magnetic linear trimers, **137**, 77

 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$   $nH_2O$  thin film, hydrothermal synthesis, **141**, 229

ScNiP, Sc-Sc bonding in, 137, 218

Sr<sub>4</sub>Ni<sub>3</sub>O<sub>9</sub>, hexagonal perovskites with one-dimensional structures related to, electron microscopy, **135**, 1

Niobium

Bi<sub>2</sub>O<sub>3</sub>-Nb<sub>2</sub>O<sub>5</sub> system, review, 137, 42

CaFe<sub>1/2</sub>Nb<sub>1/2</sub>O<sub>3</sub>, crystal chemistry, **138**, 272

 $Ca_{1-x}Sr_xNbO_3$  ( $0 \le x \le 1$ ) perovskite-type phases, synthesis, structure, and electron microscopy, **141**, 514

CaTi<sub>1-2x</sub>Fe<sub>x</sub>Nb<sub>x</sub>O<sub>3</sub> perovskite series, structural study, **138**, 272

Cs<sub>2</sub>YbNb<sub>6</sub>Br<sub>18</sub>, twinning and atomic structure of twin interface, 141,

KLiNb<sub>5</sub>O<sub>9</sub>(PO<sub>4</sub>)<sub>3</sub>, synthesis and intersecting tunnel structure related to ReO<sub>3</sub>, 136, 305

 $KLi_{1-x}(Nb,W)_5O_9(PO_4)_3$ , synthesis and intersecting tunnel structure related to ReO<sub>3</sub>, 136, 305

K<sub>2</sub>NbO<sub>3</sub>F, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd RE-DOR NMR study, **140**, 285

LiNbO<sub>3</sub> solid solutions with Mn<sup>2+</sup>, preparation and characterization, 140, 168

Mg<sub>5</sub>Nb<sub>4</sub>O<sub>15</sub>, crystal structure refinement by Rietveld analysis of neutron powder diffraction data, 137, 359

MnTi<sub>1-x</sub>Nb<sub>x</sub>O<sub>3</sub> system, magnetic properties, **136**, 115

Nb<sub>2</sub>O<sub>5</sub>, high-pressure modification, **141**, 205

NbOAsO<sub>4</sub>, intercalation of 1-alkanols and 1, $\omega$ -alkanediols into, **141**, 64 NbO(O<sub>2</sub>)<sub>0.5</sub>PO<sub>4</sub>·2H<sub>2</sub>O, characterization, **137**, 289

NbOPO<sub>4</sub>

intercalation of 1-alkanols and  $1,\omega$ -alkanediols into, **141**, 64 tetragonal, phase transition and negative thermal expansion, letter to editor, **141**, 303

 $A_3$ NbS<sub>4</sub> ( $A = Na_3$ Rb), synthesis and crystal structure, 139, 404

 $ANb_4WO_9(PO_4)_3$  (A = K,Rb,Cs), synthesis and intersecting tunnel structure related to  $ReO_3$ , 136, 305

NH<sub>4</sub>NbWO<sub>6</sub> defect pyrochlore, crystal structure and phase transition, 141. 537

Rb<sub>12</sub>Nb<sub>6</sub>Se<sub>35</sub> polymer with infinite anionic chains built up by Nb<sub>2</sub>Se<sub>11</sub> units containing Se<sub>3</sub><sup>4-</sup> fragment, synthesis, structure, and properties, **140.** 97

Si<sub>x</sub>(Ta,Nb)Te<sub>2</sub>, structural and microstructural aspects, 139, 105

Sm<sub>3</sub>NbSe<sub>3</sub>O<sub>4</sub>, synthesis and structure, 137, 122

Sr<sub>2</sub>NbN<sub>3</sub>, synthesis and structural characterization, 138, 297

 $Sr_4Nb_4O_{14}$ – $Sr_5Nb_4O_{15}$ – $SrTiO_3$  system, perovskite-related phases in, 135, 260

SrNb<sub>2</sub>S<sub>5</sub>, metallic characteristics, 135, 325

 $TINbXO_6$  (X = W,Mo) ceramics, structural and dielectric properties, 141, 50

Tl<sub>8</sub>Nb<sub>27.2</sub>O<sub>72</sub>, synthesis and crystal structure determination by TEM and single-crystal X-ray diffraction, **135**, 282

Nitrogen, see also Ammonium

BaHfN<sub>2</sub>, synthesis, structure, and magnetic properties, 137, 62

 $BaHf_{1-x}Zr_xN_2$  solid solution, synthesis, structure, and magnetic properties, 137, 62

BaThN<sub>2</sub>, synthesis and structural characterization, 138, 297

RBi<sub>2</sub>O<sub>4</sub>NO<sub>3</sub> (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), preparation and crystal structure, **139**, 321

 $M_2$ BN<sub>2</sub>X (M = Ca,Sr; X = F,Cl), compounds with isolated BN<sub>2</sub><sup>3-</sup> units, 135. 194

α-Ca<sub>3</sub>N<sub>2</sub>, vibrational spectra and decomposition, 137, 33

(1:1)  $Cd_{3}^{II}[(Tr^{II}/Cr^{III})(CN)_{6}]_{2} \cdot 15H_{2}O$  complexes (Tr = Co, Fe), structural and spectral studies, **140**, 140

[(CH<sub>3</sub>)<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O]Ag<sub>4</sub>I<sub>5</sub>, silver ion distribution and flow in, cooperative disorder model, **140**, 1

 $(C_4H_{12}\bar{N}_2)_2[Fe_6(HPO_4)_2(PO_4)_6(H_2O)_2]\cdot H_2O$  templated by piperazine, synthesis and characterization, **139**, 326

 $[(CH_3NH_3)_{1.03}K_{2.97}]Sb_{12}S_{20} \cdot 1.34H_2O$ , hydrothermal synthesis and crystal structure, **140**, 387

 $C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O$ , crystal structure and thermal behavior, **141**, 343

 $C_6H_{18}N_3^{2+} \cdot 2HPO_4^- \cdot 4H_2O$ , crystal structure and thermal behavior, 141, 343

Cu<sup>II</sup><sub>2</sub>Fe<sup>II</sup>(CN)<sub>6</sub> and Cu<sup>II</sup><sub>3</sub>[Fe<sup>III</sup>(CN)<sub>6</sub>]<sub>2</sub>, mechanisms of Cs sorption on, relationship to crystal structure, **141**, 475

diglycine hydrogen selenite, crystal structure, vibrational spectra, and DSC measurement, **140**, 71

ethylenediamine-templated zinc arsenate and aluminum cobalt phosphate, synthesis and zeolite-type structures, 136, 210

 $\text{Li}_{0.84}W_{1.16}N_2$ , synthesis by ammonolysis of LiF-WO $_3$  and crystal structure, 138, 154

Mg<sub>3</sub>N<sub>2</sub>, vibrational spectra and decomposition, 137, 33

monoglycine-selenious acid crystals, vibrational spectra and DSC measurement, 140, 71

MNX (M = Zr, Ti; X = Cl, Br, I) system, electronic band structure, 138, 207  $NaNO_3$ , dispersion on  $ZrO_2$ : effect of supported  $Na^+$  on  $ZrO_2$  texture properties, 138, 41

 $[N_2C_3H_5][AlP_2O_8H_2\cdot 2H_2O]$  and  $2[N_2C_3H_5][Al_3P_4O_{16}H],$  synthesis and structure, letter to editor, 136, 141

 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$ , connected through hydrogen bonding, synthesis and structure, **139**, 207

[NH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>NH<sub>3</sub>][Ga(PO<sub>4</sub>)(PO<sub>3</sub>OH)], synthesis and characterization, 136, 227

 $[NH_{3}(CH_{2})_{8}NH_{3}]_{3}[V_{15}O_{36}(Cl)](NH_{3})_{6}(H_{2}O)_{3},$  synthesis and structure,  $136,\,298$ 

 $Sn(ND_3)_2F_4$ , structure, implications for synthesis of nitride fluorides, 138, 350

 $[Sn_2(PO_4)_2]^2$   $[C_2N_2H_{10}]^{2+}$   $\cdot$   $H_2O$ , synthesis and crystal structure, **140**,

Sr<sub>39</sub>Co<sub>12</sub>N<sub>31</sub>, synthesis, structure, and magnetic properties, 141, 1

Sr<sub>2</sub>NbN<sub>3</sub>, synthesis and structural characterization, 138, 297

Nuclear magnetic resonance

<sup>27</sup>Al, MAS study of hydrotalcite-derived MgAlO oxides calcined at varying temperatures, 137, 295

<sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd REDOR study of oxygen/fluorine ordering in oxyfluorides, **140**, 285

H<sub>x</sub>MoO<sub>3</sub> bronze, protonic locations in, 141, 255

magnesium oxide-magnesium orthophosphate systems, 135, 96

<sup>29</sup>Si, MAS study of mechanochemical reactions of MgO–SiO<sub>2</sub> systems, 138, 169

Nuclear quadrupole resonance

 $Y_2Ba_4Cu_7O_{15-\delta}$ , **139**, 266

Nucleation

oriented, in preparation of mosaic crystals of vanadyl pyrophosphate, 137, 311

O

Onium ions

geometry, role in synthesis of regularly ordered heterostructures, 139, 281

```
Optical basicity table
```

for oxidic systems, 137, 94

## Optical properties

 $Bi_2S_3$  thin films prepared by thermal evaporation and chemical bath deposition, 136, 167

CuAl<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(F,OH)<sub>2</sub>, **141**, 527

D3C-THF: analysis of cubic/tetragonal phase transition, **137**, 87 diaminoanthraquinone, effect of substitution pattern, **141**, 309

In–Bi<sub>2</sub>S<sub>3</sub> annealed thin films, **138**, 290

K<sub>4</sub>In<sub>2</sub>(PSe<sub>5</sub>)<sub>2</sub>(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, **136**, 79

 $\text{Li}_{1-x}\text{H}_x\text{IO}_3$ -type complex crystals, relationship to structure, 135, 121

 $A_2MP_2Se_6$  (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), 138, 321

Rb<sub>3</sub>Sn(PSe<sub>5</sub>)(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, **136**, 79

Sb<sub>2</sub>Te<sub>3</sub> single crystals with incorporated Ag, **140**, 29

## Order-disorder transition

bicyclononanone, spectroscopic and differential scanning calorimetric studies, 136, 16

ε-Fe<sub>2</sub>O<sub>3</sub>, **139**, 93

### Ordering

 $REBa_2Fe_3O_{8+w}$  (RE = Dy,Er,Y) triple perovskites, <sup>57</sup>Fe Mössbauer study, **139**, 168

charge, in La<sub>0.2</sub>Ca<sub>0.8</sub>MnO<sub>3</sub>, associated structural and morphological changes, **140**, 331

p-dialkylbenzene-urea inclusion compounds, 141, 437

metal atoms in wurtzite and sphalerite structures, 138, 334

oxygen/fluorine in oxyfluorides, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd REDOR NMR study, **140**, 285

short-range, in  $(1-x)Bi_2O_3 \cdot xCaO \gamma$ -type solid solution, electron diffraction study and relationship to low-temperature  $Ca_4Bi_6O_{13}$ , 135, 201

Sn/P and intersitial Ni in Ni<sub>1+m</sub>Sn<sub>1-x</sub>P<sub>x</sub> B8-type solid solutions, electron diffraction study, **136**, 125

## Oxidation

 $Ln_2$ Ba $_2$ Cu $_2$ Ti $_2$ O $_{11-\delta}$  (Ln = La,Nd,Eu,Tb), simultaneously with sol-gel synthesis, 138, 141

fuel cell cathode materials lanthanun strontium manganates(III)(IV), kinetics, *in situ* powder diffraction studies, **141**, 235

methane on calcium-lead hydroxyapatites, 135, 86

methanol to formaldehyde over Mo catalysts,  $Mo_2O_5(OCH_3)_2$  and  $Mo_2O_5(OCH_3)_2 \cdot 2CH_3OH$  compounds modeling, structure, 136, 247

Oxidation catalysts

bulk optical basicity table for, 137, 94

Oxidation/reduction

reversible, in CeTaO<sub>4+ $\delta$ </sub> system, TEM and XRD study, **140**, 20

## Oxidation state

nickel in hole-doped and reduced  $Nd_{2-x}Sr_xNiO_y$  compounds, 140, 278

## Oxygen

atomic positions in Ga-In-Sn-O ceramic, determination with direct methods and electron diffraction, letter to editor, **136**, 145

half filling of O intercalation in ErBa<sub>2</sub>Cu<sub>3</sub>O<sub>6.5</sub>, new orthorhombicity type and cell volume expansions near, 135, 307

nonstoichiometry

 $Bi_2Sr_2Co_{6+\delta}$  ceramic, 136, 1

 $CaVO_{3-\delta}$ , 135, 36

Li-Mn-O spinel oxides, powder neutron diffraction study, 135,

oxygen/fluorine ordering in oxyfluorides,  $^{19}F$  MAS and  $^{19}F^{-113}Cd$  REDOR NMR study, 140, 285

release behavior of  $CeZrO_4$  powders and appearance of compounds  $\kappa$  and  $t^*$ , 138, 47

Oxygen permeability

 $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$  materials, **141**, 576

Ρ

Packing models

high-pressure polymeric phases of C<sub>60</sub>, 141, 164

Palladium

 $Cs_2PdSe_8$ , synthesis and open framework structure with double helical assemblies of  $[Pd(Se_4)_2]^{2-}$ , letter to editor, **140**, 149

EuPdIn intermetallic compounds, <sup>151</sup>Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174

 $A_2$ PdP<sub>2</sub>Se<sub>6</sub> (A = K,Rb,Cs), synthesis, structure, and optical and thermal properties, **138**, 321

Paramagnetic doping

solid aluminum fluorides: ESR and *ab initio* quantum chemical studies, **139.** 27

#### Percolation

proton conduction in polymer/brushite composites, 141, 392

Perovskites

BaBiO<sub>3</sub>, disproportionation in, stabilization, contrast with stabilization of spontaneous polarization of H<sub>2</sub> molecules, **138**, 369

 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$  (Ln = La,Nd,Eu,Tb), sol-gel synthesis and simultaneous oxidation, 138, 141

 $REBa_2Fe_3O_{8+w}$  (RE = Dy,Er,Y), <sup>57</sup>Fe Mössbauer study, **139**, 168

BaScO<sub>2</sub>F, synthesis and structure, 139, 422

 $BaSnO_3$ ,  $Ba_2SnO_4$ , and  $Ba_3Sn_2O_7$ ,  $Pr^{4+}$  doped in, EPR study, 138, 329

in  $Ba_5Ta_4O_{15}$ – $MZrO_3$  (M = Ba,Sr) system, synthesis and structural study, **141**, 492

(Ca<sub>1-x</sub>Sr<sub>x</sub>)MnO<sub>3</sub>, Mn–O–Mn angles in, relationship to electrical properties, **137**, 82

 $Ca_{1-x}Sr_xNbO_3$  (0  $\leq x \leq$  1) phases, synthesis, structure, and electron microscopy, **141**, 514

 $CaTi_{1-2x}Fe_xNb_xO_3$ , structural study, **138**, 272

CaTiO<sub>3</sub>, Gd-doped, charge compensation in, **124**, 77; comment, **137**, 355; reply, **137**, 357

hexagonal, with one-dimensional structures related to  ${\rm Sr_4Ni_3O_9},$  electron microscopy, 135, 1

 $K_{1-x}Li_xMnF_3$  single crystal, phase transition and structure in range 100–298 K, 137, 71

 $(K_xNa_{1-x})MgF_3$ , crystal chemistry and phase transitions in P-T-X space, **141**, 121

 $LaBa_2Fe_3O_{8+w}$  ( -0.20 < w < 0.83), cubic phase, <sup>57</sup>Fe Mössbauer spectroscopy, **138**, 87

 $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$ , effect of  $Ge^{4+}$ , electrical properties, effect of  $Ge^{4+}$ , 140, 431

La<sub>2/3</sub>Ca<sub>1/3</sub>Mn<sub>1-x</sub>In<sub>x</sub>O<sub>3</sub>, structural, magnetic, and electrical properties, 138, 226

La<sub>0.2</sub>Ca<sub>0.8</sub>MnO<sub>3</sub>, structural and morphological changes associated with charge ordering, 140, 331

LaGaO<sub>3</sub>, Sr- and Mg-doped oxide-ion conductor, wet chemical synthesis, 136, 274

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$  system, synthesis, phase diagram, and conductivity, **140**, 377

 $LaNi_{0.95}M_{0.05}O_3$  (M = Mo,W,Sb,Ti,Cu,Zn), metal–insulator transitions in, 136, 313

 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$  (0.5  $\leq x \leq$  0.9), synthesis and properties, **139**, 388

 $\text{La}_{1-x}\text{Sr}_x\text{CrO}_3$  ( $x=0\sim0.25$ ), magnetic and neutron diffraction study, 141, 404

 $Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3$ , structural study, 138, 307

 $NaLnTiO_4$  (Ln = Sm,Eu,Gd), magnetic properties, 138, 342

 $LnMO_3$  (Ln = La-Lu, Y; M = Al,Ga), stability, calorimetric study, **141**, 424

related phases in Sr<sub>4</sub>Nb<sub>4</sub>O<sub>14</sub>–Sr<sub>5</sub>Nb<sub>4</sub>O<sub>15</sub>–SrTiO<sub>3</sub> system, **135**, 260 Phase analysis

quantitative,  $Zr_xTi_{1-x}O_2$  (x = 0.22,0.39,0.60) prepared by sol-gel synthesis, **139**, 225

Phase composition

 $In_2S_3$  thin films, study by diffraction of synchrotron radiation, 137, 6 Phase diagrams

AgI:Ag<sub>2</sub>MoO<sub>4</sub> system: devitrification and metastability, 140, 91

Ba-Cu-O-Cl system, 141, 378

 $ACI/TmCl_3$  (A = Cs,Rb,K), 135, 127

EuI<sub>2</sub>-KI, **136**, 134

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$  system, 140, 377

Nd<sub>2</sub>O<sub>3</sub>-Co-Co<sub>2</sub>O<sub>3</sub> system, 137, 255

NiCr<sub>2</sub>S<sub>4</sub>-NiIn<sub>2</sub>S<sub>4</sub>-Cr<sub>2</sub>S<sub>3</sub>-In<sub>2</sub>S<sub>3</sub>, **136**, 193

 $Pb_2MgW_xTe_{(1-x)}O_6$  solid solution, 139, 332

Ru-Y system, optimization, 138, 302

Phase relations

BaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, Al-rich part, 136, 253

BiO<sub>1.5</sub>-YbO<sub>1.5</sub>-CuO system, **139**, 398

 $CaVO_{3-\delta}$  oxygen-deficient phases, 135, 36

Ce-Al-(Si,Ge) systems, 137, 191

La<sub>2</sub>O<sub>3</sub>-NiO-Li<sub>2</sub>O system at 700, 800, and 900°C, **141**, 457

in Li<sub>2</sub>O-Fe<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> system, **141**, 221

Li<sub>2</sub>O-TiO<sub>2</sub>-Ti<sub>2</sub>O<sub>3</sub> system under reducing conditions, 138, 74

 $Nd_2O_3$ -Co- $Co_2O_3$  system at 1100 and 1150°C, thermogravimetric study, 137, 255

Sr<sub>4</sub>Nb<sub>4</sub>O<sub>14</sub>-Sr<sub>5</sub>Nb<sub>4</sub>O<sub>15</sub>-SrTiO<sub>3</sub> system, 135, 260

Phase stabilization

tetragonal nanophases of nondoped sol-gel ZrO<sub>2</sub> prepared with hydrolysis catalysts, **135**, 28

Phase transformations

ABW-type CsLiSO<sub>4</sub>, symmetry analysis and atomic distortions, **138**, 267

 $Bi_2Sr_2CaCu_2O_8$  to  $Bi_2Sr_2Ca_2Cu_3O_{10}$ , 139, 1

Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub>, **135**, 175

2-bromo-2-nitropropane-1,3-diol crystals, 137, 231

Ca<sub>3</sub>(VO<sub>4</sub>)<sub>2</sub> amorphization at high pressure, 139, 161

cubic/tetragonal, in D3C-THF, optical and X-ray powder diffraction study, 137, 87

 $H_{0.27}V_{0.27}W_{0.73}O_3\cdot 1/3H_2O$  to  $V_{0.27}W_{0.73}O_{2.865},$  X-ray, thermal, and HREM studies, 136, 284

K<sub>1-x</sub>Li<sub>x</sub>MnF<sub>3</sub> single crystal in range 100–298 K, **137**, 71

 $(K_xNa_{1-x})MgF_3$  perovskites in P-T-X space, **141**, 121

La<sub>0.2</sub>Ca<sub>0.8</sub>MnO<sub>3</sub>, associated with charge ordering, **140**, 331

 $La_{2-x}Nd_xCuO_4$  system, **140**, 345

La<sub>0.9</sub>Sr<sub>0.1</sub>Ga<sub>0.8</sub>Mg<sub>0.2</sub>O<sub>2.85</sub>, high-temperature powder neutron diffraction study, 139, 135

LiIn and LiCd under pressure from NaTl-type phases to  $\beta$ -brass-type alloys, 137, 104

Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub> from garnet to alluaudite structure after cationic substitutions, 137, 112

Nb<sub>2</sub>O<sub>5</sub> at high pressure, 141, 205

NbOPO<sub>4</sub>, tetragonal polymorph, letter to editor, 141, 303

NH<sub>4</sub>NbWO<sub>6</sub> defect pyrochlore, **141**, 537

order–disorder, in bicyclononanone, spectroscopic and differential scanning calorimetric studies, **136**, 16

RPtAl (R = Ce, Pr, Nd), 140, 233

Ti<sub>3</sub>O<sub>5</sub>, **136**, 67

 $VO_2(A)$ , mechanism, **141**, 594

Y<sub>4</sub>Al<sub>2</sub>O<sub>9</sub> at high temperature, 141, 466

 $\rm ZrV_2O_7,$  temperature-dependent, in situ electron and X-ray diffraction studies, 137, 161

Phonons, see Electron-phonon coupling

Phosphorus

Ag<sub>0.7</sub>Mo<sub>3</sub>O<sub>7</sub>(PO<sub>4</sub>) bronze built up from ReO<sub>3</sub>-type slabs, synthesis, structure, and properties, 140, 128

 $AgXPO_4$  (X = Be,Zn), crystal structures and crystal chemistry, 141,

BaBPO<sub>5</sub>, crystal structure and thermal decomposition, 135, 43

 $Ba_3Li_2Cl_2(MoO)_4(PO_4)_6$  with intersecting tunnel structure, synthesis, 141. 587

Ba<sub>3</sub>V<sub>2</sub>O<sub>3</sub>(PO<sub>4</sub>)<sub>3</sub>, with chain-like structure, 135, 302

Ba<sub>2</sub>(VO<sub>2</sub>)(PO<sub>4</sub>)(HPO<sub>4</sub>)·H<sub>2</sub>O, with trigonal bipyramidal VO<sub>5</sub> groups, hydrothermal synthesis and crystal structure, **140**, 272

Bi<sub>6.67</sub>(PO<sub>4</sub>)<sub>4</sub>O<sub>4</sub>, synthesis and crystal structure, **139**, 274

 $\text{Bi}_9(V_{1-x}P_x)_2\text{ClO}_{18}$  series  $(0 \le x \le 1)$ , synthesis, crystal structure, IR characterization, and electrical properties, 136, 34

CaHPO<sub>4</sub>·2H<sub>2</sub>O phosphates, composites with polymer, percolation and modeling of proton conduction in, **141**, 392

Cd<sub>4</sub>P<sub>2</sub>Cl<sub>3</sub>, crystal structure, **137**, 138

Cd<sub>7</sub>P<sub>4</sub>Cl<sub>6</sub>, crystal structure, 137, 138

(C<sub>4</sub>H<sub>12</sub>N<sub>2</sub>)<sub>2</sub>[Fe<sub>6</sub>(HPO<sub>4</sub>)<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>2</sub>] · H<sub>2</sub>O templated by piperazine, synthesis and characterization, **139**, 326

C<sub>3</sub>H<sub>12</sub>N<sub>2</sub><sup>2+</sup>·HPO<sub>4</sub><sup>2−</sup>·H<sub>2</sub>O, crystal structure and thermal behavior, **141**, 343

 $C_6H_{18}N_3^{2+} \cdot 2HPO_4^- \cdot 4H_2O$ , crystal structure and thermal behavior, 141, 343

Cs<sub>3</sub>(HSeO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>PO<sub>4</sub>), synthesis and crystal structure, **141**, 317

Cs<sub>5</sub>(HSeO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, synthesis and crystal structure, 141, 317

Cs<sub>5</sub>(HSO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, solid acid with unique hydrogen bond network, X-ray diffraction study, **140**, 251

 $\beta$ -Cs<sub>3</sub>(HSO<sub>4</sub>)<sub>2</sub>[H<sub>2-x</sub>(P<sub>1-x</sub>,S<sub>x</sub>)O<sub>4</sub>] ( $x \sim 0.5$ ) superprotonic conductor, structure and vibrational spectrum, **139**, 373

CsMnHP<sub>3</sub>O<sub>10</sub>, magnetic structure and properties, 141, 160

 $Cs_4(SeO_4)(HSeO_4)_2(H_3PO_4), \ synthesis \ and \ crystal \ structure, \ \textbf{141}, \ 317 \\ Cs_5VW_4O_9VO_4(PO_4)_4, \ air \ synthesis \ and \ intersection \ tunnnels, \ \textbf{141}, \ 155$ 

CuInP<sub>2</sub>S<sub>6</sub>, soft-chemistry forms, 141, 290

1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and physical properties, 136, 93

ethylenediamine-templated aluminum cobalt phosphate, synthesis and zeolite-type structure, **136**, 210

ethylenediamine-templated 1-D [enH<sub>2</sub>][Zr(HPO<sub>4</sub>)<sub>3</sub>] and 2-D [enH<sub>2</sub>]<sub>0.5</sub>[Zr(PO<sub>4</sub>)(HPO<sub>4</sub>)], crystal structures, **140**, 46

H<sub>2</sub>O-Na<sub>2</sub>SO<sub>4</sub>-Na<sub>2</sub>HPO<sub>4</sub> system, isotherms, conductivity measurements, **140**, 316

(H<sub>2</sub>O)[V<sub>2</sub>O<sub>2</sub>(OH){O<sub>3</sub>P(CH<sub>2</sub>)<sub>2</sub>PO<sub>3</sub>}], hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89

KH<sub>2</sub>PO<sub>4</sub>, high-temperature form, preparation and crystal structure, 141, 486

K<sub>4</sub>In<sub>2</sub>(PSe<sub>5</sub>)<sub>2</sub>(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, synthesis, structure, and optical and thermal properties, 136, 79

KLiNb<sub>5</sub>O<sub>9</sub>(PO<sub>4</sub>)<sub>3</sub>, synthesis and intersecting tunnel structure related to ReO<sub>3</sub>, **136**, 305

 $KLi_{1-x}(Nb,W)_5O_9(PO_4)_3$ , synthesis and intersecting tunnel structure related to  $ReO_3$ , 136, 305

KMgPO<sub>4</sub>, crystal chemistry and polymorphism, 136, 175

Li<sub>3</sub>Fe<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, cathode materials for rechargeable lithium batteries, 3D framework structure, 135, 228

 $LiLaP_4O_{12},$  crystalline and glass modifications, vibronic transitions of  $Gd^{3\,+}$  and  $Eu^{3\,+}$  in,  $136,\,206$ 

 $\text{Li}_9M_3(\text{P}_2\text{O}_7)_3(\text{PO}_4)_2$  (M = Al,Ga,Cr,Fe), crystal structure and cation transport properties, 138, 32

LiZnPO<sub>4</sub>, polymorph with cristobalite-type framework topology, 138,

 $MgO-Mg_3(PO_4)_2$  systems, XRD and solid-state NMR studies, 135, 96 AMoOPO<sub>4</sub>Cl (A=K,Rb), synthesis and layer structure, 137, 214

Na<sub>5</sub>[B<sub>2</sub>P<sub>3</sub>O<sub>13</sub>], hydrothermal and microwave-assisted synthesis, letter to editor, **140**, 154

NaFe $_{3.67}(PO_4)_3$ , hydrothermal synthesis, structure, and characterization, 139, 152

 $Na_4P_2S_6 \cdot 6H_2O$ , single-crystal structure determination, 141, 274

NbO(O<sub>2</sub>)<sub>0.5</sub>PO<sub>4</sub>·2H<sub>2</sub>O, characterization, 137, 289

NbOPO<sub>4</sub>

intercalation of 1-alkanols and 1,ω-alkanediols into, 141, 64

tetragonal, phase transition and negative thermal expansion, letter to editor. **141**, 303

 $ANb_4WO_9(PO_4)_3$  (A = K,Rb,Cs), synthesis and intersecting tunnel structure related to ReO<sub>3</sub>, 136, 305

 $[N_2C_3H_5][AlP_2O_8H_2 \cdot 2H_2O]$  and  $2[N_2C_3H_5][Al_3P_4O_{16}H]$ , synthesis and structure, letter to editor, **136**, 141

[N(C<sub>2</sub>H<sub>5</sub>NH<sub>3</sub>)<sub>3</sub>]<sup>3+</sup>[Sn(PO<sub>4</sub>)(HPO<sub>4</sub>)]<sup>3-</sup>·4H<sub>2</sub>O, connected through hydrogen bonding, synthesis and structure, **139**, 207

[NH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>NH<sub>3</sub>][Ga(PO<sub>4</sub>)(PO<sub>3</sub>OH)], synthesis and characterization, 136, 227

NH<sub>4</sub>VP<sub>2</sub>O<sub>7</sub>, structural study by X-ray powder diffraction, **136**, 181

 $Ni_{1+m}Sn_{1-x}P_x$ , B8-type solid solutions, Sn/P and interstitial Ni ordering in, electron diffraction study, **136**, 125

 $M_2$ P intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218

 $Pb_x(PO_2)_4(WO_3)_{2m}$  (6  $\leq m \leq$  10) bronze, characterization, **139**, 362  $Pb^{II}Sn^{IV}(PO_4)_2$ , structure and stereochemical activity of  $Pb^{II}$  lone pair,

 $A_2MP_2Se_6$  (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), synthesis, structure, and optical and thermal properties, **138**, 321

Rb<sub>3</sub>Sn(PSe<sub>5</sub>)(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, synthesis, structure, and optical and thermal properties, **136**, 79

ScNiP, Sc-Sc bonding in, 137, 218

 $[Sn_2(PO_4)_2]^2$   $[C_2N_2H_{10}]^{2+}$   $\cdot$   $H_2O$ , synthesis and crystal structure, **140**, 435

Sn<sub>2</sub>(PO<sub>4</sub>)[C<sub>2</sub>O<sub>4</sub>]<sub>0.5</sub> containing one-dimensional tin phosphate chains, synthesis and structure, **139**, 200

Sn<sub>2</sub>P<sub>2</sub>S<sub>6</sub>, soft-chemistry forms, **141**, 290

Ti(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>), crystal structure from neutron powder data, **140**, 266 Tl<sub>2</sub>(MoO<sub>3</sub>)<sub>3</sub>PO<sub>3</sub>CH<sub>3</sub>, synthesis, structure, and properties, **138**, 365

(VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, mosaic crystals obtained by oriented nucleation and growth, **137**, 311

 $M(\text{VOPO}_4)_2 \cdot 4\text{H}_2\text{O}$  (M = Co(II), Ni(II)), layered compounds with distinct magnetic linear trimers, 137, 77

zirconium phosphate fluorides templated with amines, hydrothermal synthesis and crystal structure, 135, 293

Zn(O<sub>3</sub>PC<sub>6</sub>H<sub>5</sub>)·H<sub>2</sub>O, thermal behavior, **140**, 62

 $\gamma\text{-}Zn_2P_2O_7,$  structure determination from X-ray powder diffraction data, 140, 62

Zr<sub>2.7</sub>Hf<sub>11.3</sub>P<sub>9</sub>, bonding and site preferences, 136, 221

Photoluminescence spectroscopy

Eu and La in codoped CaS, 138, 149

TiO<sub>2</sub> ultrafine particles: electronic state characterization, **139**, 124 Pillared materials

porous chromia-pillared tetratitanate, synthesis, 136, 320

Piperazine

 $(C_4H_{12}N_2)_2[Fe_6(HPO_4)_2(PO_4)_6(H_2O)_2] \cdot H_2O$  templated by, synthesis and characterization, **139**, 326

Platinum

 $Ba_4(Ba_xPt_{1-x}^{2+})Pt_2^{4+}O_9$  twinned crystal, diffraction and DAFS studies, **140**, 201

Ba–Pt–O system ( $\frac{4}{3} < Y = \text{Ba/Pt} < \frac{5}{2}$ ), synthesis and crystal structure, **140**, 194

EuPtIn intermetallic compounds, <sup>151</sup>Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174

RPtAl (R = Ce, Pr, Nd), magnetic structures, **140**, 233

Pnictides

 $M_2X$  intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218

Polarization

spontaneous, H<sub>2</sub> molecules, stabilization of, contrast with stabilization of diproportionation in BaBiO<sub>3</sub>, letter to editor, **138**, 369

Polaronic conduction

 $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4$  (0.25  $\leq x \leq$  1.10) below room temperature, **139**, 176 Poly(ethylene oxide)

nanocomposites of misfit layer chalcogenides, synthesis and characterization, **141**, 323

Polymers

brushite composites with, percolation and modeling of proton conduction in, **141**, 392

C<sub>60</sub>, high-pressure phases, packing models, 141, 164

Rb<sub>12</sub>Nb<sub>6</sub>Se<sub>35</sub>, with infinite anionic chains built up by Nb<sub>2</sub>Se<sub>11</sub> units containing Se<sub>3</sub><sup>4-</sup> fragment, synthesis, structure, and properties, **140**, 97

[Zn(4,4'-bipy)(H<sub>2</sub>O)(SO<sub>4</sub>)] · 0.5H<sub>2</sub>O, with interwoven double-layer structure, synthesis and characterization, **138**, 361

Polyphenylene sulfide

composites with brushite, percolation and modeling of proton conduction in, 141, 392

Potassium

[(CH $_3$ NH $_3$ ) $_{1.03}$ K $_{2.97}$ ]Sb $_{12}$ S $_{20} \cdot 1.34$ H $_2$ O, hydrothermal synthesis and crystal structure, **140**, 387

EuI<sub>2</sub>-KI binary system, phase diagram, 136, 134

KBH<sub>4</sub>, reduction of KMnO<sub>4</sub> in aqueous solutions: synthesis of manganese oxides, **137**, 28

K<sub>4</sub>Bi<sub>2</sub>O<sub>5</sub>, synthesis and crystal structure, **139**, 342

KBi<sub>3</sub>S<sub>5</sub>, open-framework semiconductors, preparation of topotactic derivatives of, letter to editor, **136**, 328

KCl/TmCl<sub>3</sub>, phase diagrams and thermodynamics, 135, 127

(KCl)<sub>x</sub>(UCl<sub>4</sub>)<sub>y</sub>, deposition inside carbon nanotubes using eutectic and noneutectic mixtures of UCl<sub>4</sub> with KCl, **140**, 83

 $KLn^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf; Ln^{III} = Ce-Lu$ ), synthesis and crystal structure, **139**, 248

KH<sub>2</sub>PO<sub>4</sub>, high-temperature form, preparation and crystal structure, 141, 486

 $K_4In_2(PSe_5)_2(P_2Se_6),$  one-dimensional compounds, synthesis, structure, and optical and thermal properties,  ${\bf 136,\ 79}$ 

K<sub>1-x</sub>Li<sub>x</sub>MnF<sub>3</sub> single crystal, phase transition and structure in range 100-298 K, **137**, 71

KLiNb<sub>5</sub>O<sub>9</sub>(PO<sub>4</sub>)<sub>3</sub>, synthesis and intersecting tunnel structure related to ReO<sub>3</sub>, **136**, 305

 $KLi_{1-x}(Nb,W)_5O_9(PO_4)_3$ , synthesis and intersecting tunnel structure related to  $ReO_3$ , 136, 305

KMgPO<sub>4</sub>, crystal chemistry and polymorphism, 136, 175

 $KMnO_4$ , reduction with  $KBH_4$  in aqueous solutions: synthesis of manganese oxides, 137, 28

KMoOPO<sub>4</sub>Cl, synthesis and layer structure, 137, 214

 $(K_xNa_{1-x})MgF_3$  perovskites, crystal chemistry and phase transitions in P-T-X space, 141, 121

K<sub>2</sub>NbO<sub>3</sub>F, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd RE-DOR NMR study, **140**, 285

KNb<sub>4</sub>WO<sub>9</sub>(PO<sub>4</sub>)<sub>3</sub>, synthesis and intersecting tunnel structure related to ReO<sub>3</sub>, 136, 305

 $KNd_3Te_8$ , flat Te nets of, site occupancy wave and infinite zigzag  $(Te_2^{2-})_n$  chains in, 135, 111

 $K_2NiF_4$ , structure,  $La_2Li_{1/2}M_{1/2}O_4$  (M(III) = Co,Ni,Cu) with variant of, 138, 18

KPb<sub>4</sub>(VO<sub>4</sub>)<sub>3</sub> with anion-deficient apatite structure, **141**, 373

 $K_2MP_2Se_6$  (M=Pd,Zn,Cd,Hg), synthesis, structure, and optical and thermal properties, 138, 321

 $K_2Sn_4S_9$  layered compounds, flux synthesis and characterization, 141, 17

 $KTb^{\text{III}}Tb_2^{\text{IV}}F_{12},$  synthesis and crystal structure, 139, 248

K<sub>4</sub>Zr<sub>6</sub>Br<sub>18</sub>C, structure, 139, 85

 $La_{1-x-y}K_xMnO_{3-\delta}$ , synthesis, structure, and properties, 137, 19 Potential energy surface

crystalline  $AB_2$  systems, 136, 233

```
Powder neutron diffraction
                                                                                                           Pr_{1-x}A_xMnO_3 (A = Ca,Sr), charge-ordered, effect of internal pressure,
  Ba<sub>3</sub>AlO<sub>4</sub>H, 141, 570
                                                                                                                 letter to editor, 135, 169
                                                                                                           Pr_{1-x}Nd_xTiO_3 (0 \leq x \leq 1), magnetic studies, letter to editor, 137, 181
  RBa_2Fe_3O_{8+x} phases (R = La,Nd,Sm,Gd,Dy,Er,Yb,Lu,Y), 136, 21
  RBi_2O_4NO_3 (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), 139, 321
                                                                                                           PrPtAl, magnetic structure, 140, 233
                                                                                                           Pr<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201
  Ga_{3-x}In_{5+x}Sn_2O_{16}, 140, 242
  A_4A'\operatorname{Ir}_2\operatorname{O}_9 (A = Sr,Ba; A' = \operatorname{Cu}_2\operatorname{Zn}), commensurate and incommensur-
                                                                                                           effects on (K<sub>x</sub>Na<sub>1-x</sub>)MgF<sub>3</sub> perovskites, 141, 121
        ate phases, 136, 103
  La<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>, 141, 411
                                                                                                          GeSe<sub>2</sub> amorphization induced by, analysis, 141, 248
  La<sub>2-x</sub>Nd<sub>x</sub>CuO<sub>4</sub> system, structural transitions, 140, 345
                                                                                                          induction of phase transformation of LiIn and LiCd from NaTl-type
  La_{1-x}Sr_xCrO_3 (x = 0 ~ 0.25) perovskites, 141, 404
                                                                                                                 phases to \beta-brass-type alloys, 137, 104
  La<sub>0.9</sub>Sr<sub>0.1</sub>Ga<sub>0.8</sub>Mg<sub>0.2</sub>O<sub>2.85</sub> at high temperature, 139, 135
                                                                                                           internal, effect on charge-ordered rare earth manganates, letter to editor,
  LiYO<sub>2</sub> doped with Eu<sup>3+</sup>, refinement of monoclinic and tetragonal struc-
                                                                                                                 135, 169
        tures at 77 and 383 K, 137, 242
                                                                                                        Protons
  Mg<sub>5</sub>Nb<sub>4</sub>O<sub>15</sub> and Mg<sub>5</sub>Ta<sub>4</sub>O<sub>15</sub>, crystal structure refinement by Rietveld
                                                                                                          conduction in polymer/brushite composites, percolation and modeling,
        analysis, 137, 359
  Nd<sub>4</sub>Ni<sub>3</sub>O<sub>8</sub>, 140, 307
                                                                                                          locations in H<sub>x</sub>MoO<sub>3</sub> bronze, 141, 255
  oxygen nonstoichiometry in Li-Mn-O spinel oxides, 135, 132
                                                                                                        Pseudobrookite
  Sn<sup>4+</sup>-doped indium oxide and In<sub>4</sub>Sn<sub>3</sub>O<sub>12</sub>, 135, 140
                                                                                                           nonstoichiometric Li-pseudobrookite(ss) in Li<sub>2</sub>O-Fe<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> system,
  Sn(ND<sub>3</sub>)<sub>2</sub>F<sub>4</sub>, 138, 350
  Ti(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>), 140, 266
                                                                                                           related MgTi<sub>2</sub>O<sub>5</sub>, crystal chemistry of cation order-disorder in, 138, 238
   Y<sub>4</sub>Al<sub>2</sub>O<sub>9</sub> at high temperature, 141, 466
                                                                                                        Pyrochlores
Powder X-ray diffraction
                                                                                                           Bi_{1.74}Ti_2O_{6.62}, synthesis and structure, 136, 63
   Ba_4(Ba_xPt_{1-x}^{2+})Pt_2^{4+}O_9 twinned crystal, 140, 201
                                                                                                          defect, NH<sub>4</sub>NbWO<sub>6</sub>, crystal structure and phase transition, 141, 537
   RBa_2Fe_3O_{8+x} phases (R = La,Nd,Sm,Gd,Dy,Er,Yb,Lu,Y), 136, 21
                                                                                                           Lewisite, mixed valency, cation site splitting, and symmetry reduction,
   Ba_5Ta_4O_{15}–MZrO_3 (M = Ba_5Sr) system, hexagonal perovskites in, 141,
                                                                                                                 141, 562
                                                                                                           A_2M_2O_{7-y} (M = Ru,Ir), structural and electronic properties, 136, 269
  BiO<sub>1.5</sub>-YbO<sub>1.5</sub>-CuO system, 139, 398
                                                                                                           Pb<sub>2</sub>Re<sub>2</sub>O<sub>7-x</sub>, synthesis and structure, 138, 220
  Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> and Bi<sub>2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub>, 139, 1
                                                                                                           Tl<sub>2</sub>Ru<sub>2</sub>O<sub>7-δ</sub>, high-pressure synthesis, crystal structure, and metal-
  Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub> phase transitions, 135, 175
                                                                                                                 semiconductor transitions, 140, 182
  D3C-THF: analysis of cubic/tetragonal phase transition, 137, 87
                                                                                                        Pyrolysis
                                                                                                           synthesis of doped and undoped nanopowders of tetragonal polycrystal-
  DySr<sub>2</sub>Cu<sub>2.7</sub>Cr<sub>0.3</sub>O<sub>7.2</sub> and DySr<sub>2</sub>Cu<sub>2.7</sub>Mo<sub>0.3</sub>O<sub>7.2</sub>, 141, 522
  EuI<sub>2</sub>-KI binary system, 136, 134
                                                                                                                 line zirconia by spray pyrolysis, 141, 191
  Eu_{2-x}Sr_xNiO_{4+\delta}, 141, 99
                                                                                                        PZT thin films
  fuel cell cathode materials lanthanum strontium manganates(III)(IV): in
                                                                                                           preparation on stainless steel using electrochemical reduction, 136, 293
         situ study of oxidation kinetics, 141, 235
  Ga_{3-x}In_{5+x}Sn_2O_{16}, 140, 242
                                                                                                                                                        Q
  H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O phase transitions to V_{0.27}W_{0.73}O_{2.865},
                                                                                                        Quantum chemistry
        136, 284
                                                                                                           Mn<sup>2+</sup>-doped AlF<sub>3</sub>, ab initio calculations, and ESR studies, 139, 27
  in situ anomalous, with Rietveld refinement, in measurement of cation
                                                                                                           MO_2 (M = Ba,Sr,Ca,Mg,Be), ab initio study of structure and stability,
        distribution in Fe<sub>2.75</sub>Ti<sub>0.25</sub>O<sub>4</sub>, 141, 105
                                                                                                                 140, 103
  La<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>, 141, 411
                                                                                                        Quotient graphs
  La<sub>8</sub>Ti<sub>10</sub>S<sub>24</sub>O<sub>4</sub>, 136, 46
                                                                                                           isomorphic, geometrical relationships between nets mapped on, 138, 55
  LiNbO<sub>3</sub> and LiTaO<sub>3</sub> solid solutions with Mn<sup>2+</sup>, 140, 168
  LiNi(AsO<sub>4</sub>), 141, 508
  MIL-5 composite microporous compounds, 141, 89
  Mo<sub>2</sub>O<sub>5</sub>(OCH<sub>3</sub>)<sub>2</sub> and Mo<sub>2</sub>O<sub>5</sub>(OCH<sub>3</sub>)<sub>2</sub> · 2CH<sub>3</sub>OH, 136, 247
                                                                                                        Raman spectroscopy
  Nb<sub>2</sub>O<sub>5</sub> modified at high pressure, 141, 205
                                                                                                           BaFe<sub>12</sub>O<sub>19</sub> hexagonal ferrite, 137, 127
  NH<sub>4</sub>VP<sub>2</sub>O<sub>7</sub>, 136, 181
                                                                                                           α-Ca<sub>3</sub>N<sub>2</sub>, 137, 33
  Ni_y(Cr_{2-2x}In_{2x})_{1-y}S_{3-y} spinel, 136, 193
                                                                                                           \beta-Cs<sub>3</sub>(HSO<sub>4</sub>)<sub>2</sub>[H<sub>2-x</sub>(P<sub>1-x</sub>,S<sub>x</sub>)O<sub>4</sub>] (x ~ 0.5) superprotonic conductor,
  ScMnO<sub>3</sub> crystalline solids with liquid-mix disorder, 141, 78
                                                                                                                 139. 373
  SrNb<sub>2</sub>S<sub>5</sub> and SrTa<sub>2</sub>S<sub>5</sub>, 135, 325
                                                                                                          diglycine hydrogen selenite crystals, 140, 71
                                                                                                          effect of supported Na<sup>+</sup> on ZrO<sub>2</sub> texture properties, 138, 41
  TaReSe<sub>4</sub> layered crystals, structure, defect structure, microstructure, and
        rotation twins, 135, 235
                                                                                                           Mg<sub>3</sub>N<sub>2</sub>, 137, 33
  zinc phenylphosphonate thermal behavior and structural determination
                                                                                                          monoglycine-selenious acid crystals, 140, 71
                                                                                                          NbO(O<sub>2</sub>)<sub>0.5</sub>PO<sub>4</sub>·2H<sub>2</sub>O, 137, 289
        of \gamma-Zn<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, 140, 62
Powder X-ray thermodiffractometry
                                                                                                          order-disorder phase transition in bicyclononanone, 136, 16
  NbO(O<sub>2</sub>)<sub>0.5</sub>PO<sub>4</sub>·2H<sub>2</sub>O, 137, 289
                                                                                                           oxygen release behavior of CeZrO<sub>4</sub> powders and appearance of com-
Praseodymium
                                                                                                                 pounds \kappa and T*, 138, 47
  Er<sub>5</sub>O(OPr<sup>i</sup>)<sub>13</sub>, synthesis and properties, 141, 168
                                                                                                           SnO<sub>2</sub> nanocrystals, structural study, 135, 78
  KPr^{III}M_2^{IV}F_{12} (M^{IV} = Tb, Zr, Hf), synthesis and crystal structure, 139, 248
                                                                                                        Ramsdellites
  La_{2-x}Pr_xNiO_{4+\delta}, magnetic properties, 138, 260
                                                                                                          LiTi<sub>2</sub>O<sub>4</sub> and Li<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub>, linked in solid solutions, X-ray and neutron
  Pr<sup>4+</sup>, doped in BaSnO<sub>3</sub>, Ba<sub>2</sub>SnO<sub>4</sub>, and Ba<sub>3</sub>Sn<sub>2</sub>O<sub>7</sub>, EPR study, 138, 329
                                                                                                                 diffraction studies, 141, 365
  Pr(ClO<sub>4</sub>)<sub>3</sub>, crystalline and molecular structures, 139, 259
                                                                                                        Rhenium
```

 $Mn(ReO_4)_2 \cdot 2H_2O$ , crystal structure, 138, 232

in Pr-doped zircon, valence and localization, 139, 412

Pb<sub>2</sub>Re<sub>2</sub>O<sub>7-x</sub> pyrochlores, synthesis and structure, **138**, 220

ReO<sub>3</sub>, intersecting tunnel structure related to, tungstoniobium monophosphates with, **136**, 305

 $M(ReO_4)_2$  (M = Mn,Co,Ni,Zn) anhydrous perrhenates, crystal structure, 138, 232

SbRe<sub>2</sub>O<sub>6</sub> with Re–Re bond, preparation, crystal structure, and electrical resistivity, **138**, 245

TaReSe<sub>4</sub> layered crystals, structure, defect structure, microstructure, and rotation twins, **135**, 235

#### Rheology

aciculate ultrafine  $\alpha$ -FeOOH particles under alkaline conditions, 141, 94 Rhodium

Sr<sub>3</sub>MRhO<sub>6</sub> with K<sub>4</sub>CdCl<sub>6</sub> structure

M = Sm,Eu,Tb,Dy,Ho,Er,Yb, synthesis, characterization, and magnetic properties, 139, 79

M = Y,Sc,In, synthesis and characterization, **139**, 416

## Rietveld refinement

 $Al_{13}O_4(OH)_{24}(H_2O)_{12}^{7+}$  cluster encapsulated into MoS<sub>2</sub> and WS<sub>2</sub>, 139,

 $RBi_2O_4NO_3$  (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), 139, 321

 $Ln(ClO_4)_3$  (Ln = La, Ce, Pr, Sm, Eu, Ho, Er, Tm, Lu), 139, 259

DySr<sub>2</sub>Cu<sub>2.7</sub>Cr<sub>0.3</sub>O<sub>7.2</sub> and DySr<sub>2</sub>Cu<sub>2.7</sub>Mo<sub>0.3</sub>O<sub>7.2</sub>, **141**, 522

 $Eu_{2-x}Sr_xNiO_{4+\delta}$ , **141**, 99

 $\alpha\text{-Fe}_2O_3$  doped with Mg²+, 140, 428

 $Ga_{3-x}In_{5+x}Sn_2O_{16}$ , 140, 242

and *in situ* anomalous powder diffraction, in measurement of cation distribution in Fe<sub>2.5</sub>Ti<sub>0.25</sub>O<sub>4</sub>, **141**, 105

 $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$ , **140**, 431

 $La_{1-x}Ca_xMnO_3$ , **140**, 320

LiNi(AsO<sub>4</sub>), **141**, 508

 $LiTi_2O_4$  and  $Li_2Ti_3O_7$  ramsdellites linked in solid solutions, X-ray and neutron studies, **141**, 365

 $Mg_5Nb_4O_{15}$  and  $Mg_5Ta_4O_{15}$ , analysis of neutron powder diffraction data, 137, 359

Mn<sub>4</sub>Ta<sub>2</sub>O<sub>9</sub>, 137, 276

Nd<sub>4</sub>Cu<sub>2</sub>O<sub>7</sub>, cooperatively distorted T' type structure, **136**, 137

NH<sub>4</sub>NbWO<sub>6</sub> defect pyrochlore, 141, 537

nonstoichiometric Li-pseudobrookite(ss) in Li<sub>2</sub>O-Fe<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> system, **141**, 221

Sr<sub>3</sub>MRhO<sub>6</sub>, with K<sub>4</sub>CdCl<sub>6</sub> structure-type

M = Sm,Eu,Tb,Dy,Ho,Er,Yb, 139, 79

M = Y,Sc,In, 139, 416

Y<sub>4</sub>Al<sub>2</sub>O<sub>9</sub> at high temperature, **141**, 466

 $Zr_3Te$  and  $Zr_5Te_4$ , 139, 213

## Rotation twins

in TaReSe<sub>4</sub> layered crystals, electron microscopic and X-ray diffraction analysis, **135**, 235

## Rubidium

Rb<sub>2</sub>CdCl<sub>4</sub>, X-ray diffraction and electronic structure, 140, 371

RbCe<sub>3</sub>Te<sub>8</sub>, flat Te nets of, site occupancy wave and infinite zigzag  $(\text{Te}_{2}^{2-})_{n}$  chains in, 135, 111

RbCl/TmCl<sub>3</sub>, phase diagrams and thermodynamics, 135, 127

Rb<sub>2</sub>MoO<sub>2</sub>As<sub>2</sub>O<sub>7</sub>, preparation and crystal structure, **141**, 500

RbMoOPO<sub>4</sub>Cl, synthesis and layer structure, 137, 214

Rb<sub>12</sub>Nb<sub>6</sub>Se<sub>35</sub> polymer with infinite anionic chains built up by Nb<sub>2</sub>Se<sub>11</sub> units containing Se<sub>3</sub><sup>4-</sup> fragment, synthesis, structure, and properties, **140.** 97

RbNb<sub>4</sub>WO<sub>9</sub>(PO<sub>4</sub>)<sub>3</sub>, synthesis and intersecting tunnel structure related to ReO<sub>3</sub>, **136**, 305

Rb<sub>2</sub>MP<sub>2</sub>Se<sub>6</sub> (M = Pd,Zn,Cd,Hg), synthesis, structure, and optical and thermal properties. **138**, 321

 $Rb_3MS_4$  (M = Nb,Ta), synthesis and crystal structure, 139, 404

Rb<sub>3</sub>Sc<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, synthesis and structure determination by synchrotron single crystal methods, **139**, 299

Rb<sub>3</sub>Sn(PSe<sub>5</sub>)(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, synthesis, structure, and optical and thermal properties, **136**, 79

 $Rb_2Sn_4S_9$  layered compounds, flux synthesis and characterization, 141, 17

Ruddlesden-Popper phases

 $Sr_2LnMn_2O_7$  (Ln = Y,La,Nd,Eu,Ho), HRTEM study, 138, 135

Sr<sub>3</sub>Mn<sub>2</sub>O<sub>7</sub>, crystal and magnetic structures, letter to editor, **141**, 599 Ruthenium

 $\text{Ca}_3\text{Co}_{1+x}\text{Ru}_{1-x}\text{O}_6$ , one-dimensional oxides, synthesis and magnetic properties, **140**, 14

A<sub>2</sub>Ru<sub>2</sub>O<sub>7-y</sub> pyrochlores, structural and electronic properties, **136**, 269 Ru-Y system, calorimetric study with phase diagram optimization, **138**, 302

 $Tl_2Ru_2O_{7-\delta}$  pyrochlore, high-pressure synthesis, crystal structure, and metal–semiconductor transitions, **140**, 182

 $[(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(RuO_2)_x \ (0 \le x \le 0.1)$  ceramics, preparation and electrical characterization, **141**, 282

S

## Samarium

 $KSm^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf$ ), synthesis and crystal structure, 139, 248

NaSmTiO<sub>4</sub> layered perovskites, magnetic properties, 138, 342

Sm<sup>3+</sup>, doping of Na<sub>2</sub>SO<sub>4</sub>, effect on electrical conductivity, **138**, 369

SmAlO<sub>3</sub> perovskite, stability, calorimetric study, 141, 424

 $SmBa_2Fe_3O_{8+x}$  phases, powder neutron and X-ray diffraction studies, 136, 21

SmBi<sub>2</sub>O<sub>4</sub>NO<sub>3</sub>, preparation and crystal structure, 139, 321

Sm<sub>3</sub>(BO<sub>3</sub>)<sub>2</sub>F<sub>3</sub>, ab initio structure determination, 139, 52

Sm(ClO<sub>4</sub>)<sub>3</sub>, crystalline and molecular structures, **139**, 259

Sm<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424

Sm<sub>3</sub>NbSe<sub>3</sub>O<sub>4</sub>, synthesis and structure, 137, 122

Sm<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201

 $SmTe_{2-x}$  semiconductor, superstructure, **140**, 300

 $Sm_{1-x}TiO_3$  (x = 0.03,0.05,0.10), magnetic properties, **141**, 262

Sr<sub>3</sub>SmRhO<sub>6</sub>, synthesis, characterization, and magnetic properties, **139**, 79

## Scandium

BaScO<sub>2</sub>F perovskite, synthesis and structure, **139**, 422

Na<sub>3</sub>ScF<sub>6</sub>, single-crystal high-pressure studies, 135, 116

 $Rb_3Sc_2(AsO_4)_3$ , synthesis and structure determination by synchrotron single crystal methods, **139**, 299

ScAl<sub>3</sub>C<sub>3</sub>, crystal structure, **140**, 396

ScMnO<sub>3</sub> crystalline solids, liquid-mix disorder in, 141, 78

ScNiP, Sc–Sc bonding in, 137, 218

Sc<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>, negative thermal expansion, 137, 148

Sr<sub>3</sub>ScRhO<sub>6</sub> with K<sub>4</sub>CdCl<sub>6</sub> structure, synthesis and characterization, 139,

substitution for Mn in Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub>, effects on electronic and magnetic properties, **141**, 546

## Selenium

Ag<sub>2</sub>Se chalcogenides, sonochemical synthesis, 138, 131

 $Cr(SeO_2OH)(Se_2O_5)$ , modifications of, crystal structures and electronic absorption spectra, 135, 70

Cr<sub>2</sub>Sn<sub>3</sub>Se<sub>7</sub>, spin glass-like behavior, 137, 249

 $Cs_2PdSe_8$ , synthesis and open framework structure with double helical assemblies of  $[Pd(Se_4)_2]^{2-}$ , letter to editor, **140**, 149

Cs<sub>3</sub>(HSeO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>PO<sub>4</sub>), synthesis and crystal structure, **141**, 317

Cs<sub>5</sub>(HSeO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, synthesis and crystal structure, **141**, 317

Cs<sub>4</sub>(SeO<sub>4</sub>)(HSeO<sub>4</sub>)<sub>2</sub>(H<sub>3</sub>PO<sub>4</sub>), synthesis and crystal structure, 141, 317

αCu<sub>2</sub>Se and Cu<sub>3</sub>Se<sub>2</sub> chalcogenides, sonochemical synthesis, 138, 131

diglycine hydrogen selenite, crystal structure, vibrational spectra, and DSC measurement, **140**, 71

GeSe<sub>2</sub>, pressure-induced amorphization, 141, 248

K<sub>4</sub>In<sub>2</sub>(PSe<sub>5</sub>)<sub>2</sub>(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, synthesis, structure, and optical and thermal properties, 136, 79

La<sub>x</sub>Mo<sub>6</sub>Se<sub>8</sub> Chevrel-phase superconductor

correlation of  $T_{\rm c}$  and interatomic distances, 136, 151

physical and superconducting properties, 136, 160

monoglycine-selenious acid crystals, vibrational spectra and DSC measurement, 140, 71

 $Na_2SeO_3$ , synthesis in vibrational mill by mechanochemical activation of  $(SeO_2 + Na_2CO_3)$  mixture, 135, 256

 $A_2MP_2Se_6$  (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), synthesis, structure, and optical and thermal properties, 138, 321

Rb<sub>12</sub>Nb<sub>6</sub>Se<sub>35</sub> polymer with infinite anionic chains built up by Nb<sub>2</sub>Se<sub>11</sub> units containing Se<sub>3</sub><sup>4-</sup> fragment, synthesis, structure, and properties, **140.** 97

Rb<sub>3</sub>Sn(PSe<sub>5</sub>)(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, synthesis, structure, and optical and thermal properties, **136**, 79

(SeO<sub>2</sub> + Na<sub>2</sub>CO<sub>3</sub>) mixture, mechanochemical activation for synthesis of Na<sub>2</sub>SeO<sub>3</sub> in vibrational mill, **135**, 256

Sm<sub>3</sub>NbSe<sub>3</sub>O<sub>4</sub>, synthesis and structure, 137, 122

 $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O,$  synthesis and crystal structure, 140, 134

TaReSe<sub>4</sub> layered crystals, structure, defect structure, microstructure, and rotation twins, **135**, 235

Semiconductors

Ag<sub>0.7</sub>Mo<sub>3</sub>O<sub>7</sub>(PO<sub>4</sub>) bronze built up from ReO<sub>3</sub>-type slabs, 140, 128

KBi<sub>3</sub>S<sub>5</sub>, open-framework, preparation of topotactic derivatives of, letter to editor, **136**, 328

 $SmTe_{2-x}$ , superstructure, **140**, 300

Semiconductor-to-metal transition

 $Sr_{1-x}La_xMo_5O_8 \ (0 \le x \le 1), 138, 7$ 

Shock synthesis

 $REBa_2Cu_3O_y$  (RE = Y,Eu,La), effect of ionic radius difference of  $RE^{3+}$  and  $Ba^{2+}$ , 136, 74

Silicate heterostructures

**136.** 51

layered, staging of organic and inorganic gallery cations in, **139**, 281

Ce–Al–(Si,Ge) systems, phase equilibria and physical properties, **137**, 191 CuAl<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(F,OH)<sub>2</sub>, hydrothermal synthesis, crystal structure, and properties, **141**, 527

MgO-SiO<sub>2</sub> systems, mechanochemical reactions, role of water, **138**, 169 Na-Fe/SiO<sub>2</sub> catalysts, surface coordinate geometry: formation of tetrahedral/octahedral site on silica surface, **137**, 325

 $Nd_6Ni_{2-x}Si_3$  and  $Nd_{42}Ni_{22-x}Si_{31}$ , crystal structure and chemistry, 137, 302

R<sub>3</sub>Si<sub>2</sub>C<sub>2</sub> (R = Y,La-Nd,Sm,Gd-Tm), magnetic and electrical properties, 138, 201

 $M_2$ Si intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218

Si<sub>x</sub>(Ta,Nb)Te<sub>2</sub>, structural and microstructural aspects, **139**, 105 Silver

admixtures in Sb<sub>2</sub>Te<sub>3</sub> and Bi<sub>2</sub>Te<sub>3</sub> single crystals, behavior of, **140**, 29 AgI:Ag<sub>2</sub>MoO<sub>4</sub> system, phase diagram: devitrification and metastability, **140**, 91

Ag<sub>0.7</sub>Mo<sub>3</sub>O<sub>7</sub>(PO<sub>4</sub>) bronze built up from ReO<sub>3</sub>-type slabs, synthesis, structure, and properties, **140**, 128

 $AgXPO_4$  (X = Be,Zn), crystal structures and crystal chemistry, **141**, 177  $Ag_2Se$  chalcogenides, sonochemical synthesis, **138**, 131

GdAgGe antiferromagnet, structure, bonding, magnetic susceptibility, and <sup>155</sup>Gd Mössbauer spectroscopy, **141**, 352

ion distribution and flow in one-dimensional ionic conductor [(CH<sub>3</sub>)<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O]Ag<sub>4</sub>I<sub>5</sub>, cooperative disorder model, **140**, 1 metal formation from hemioxides by low-energy mechanochemistry,

V-Ag catalysts, temperature-programmed reduction, 141, 186

Site occupancey wave

in flat Te nets of ALn<sub>3</sub>Te<sub>8</sub>, 135, 111

Sodiun

Cs/Na ion exchange on hydrated molybdenum bronze and synthesis of cesium molybdenum bronze at low temperature, 137, 12

H<sub>2</sub>O-Na<sub>2</sub>SO<sub>4</sub>-Na<sub>2</sub>HPO<sub>4</sub> system, isotherms, conductivity measurements, 140, 316

 $(K_xNa_{1-x})MgF_3$  perovskites, crystal chemistry and phase transitions in P-T-X space, **141**, 121

 $La_{1-x-y}Na_xMnO_{3-\delta}$ , synthesis, structure, and properties, 137, 19

Na<sub>5</sub>[B<sub>2</sub>P<sub>3</sub>O<sub>13</sub>], hydrothermal and microwave-assisted synthesis, letter to editor, **140**, 154

Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, cationic substitutions, associated transition from garnet to alluaudite structure, 137, 112

NaFe<sub>3.67</sub>(PO<sub>4</sub>)<sub>3</sub>, hydrothermal synthesis, structure, and characterization, **139**, 152

Na-Fe/SiO<sub>2</sub> catalysts, surface coordinate geometry: formation of tetrahedral/octahedral site on silica surface, 137, 325

 $Na_{x-\delta}Fe_xTi_{2-x}O_4$  ( $x=0.875, 0 \le \delta \le 0.40$ ), conductivity, **137**, 168  $Na_2Ge_4O_9$ , structure, **140**, 175

 $Na_xK_{1-x}Bi_3S_5$ , preparation, letter to editor, **136**, 328

NaLa<sub>9</sub>(GeO<sub>4</sub>)<sub>6</sub>O<sub>2</sub> apatite, single-crystal growth and structure determination, **139**, 304

 $Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3$  perovskite series, structural study, 138, 307

NaMoO<sub>3</sub>F, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd REDOR NMR study, **140**, 285

NaNi(AsO<sub>4</sub>), spectroscopic and magnetic properties, 141, 508

NaNO<sub>3</sub>, dispersion on ZrO<sub>2</sub>: effect of supported Na<sup>+</sup> on ZrO<sub>2</sub> texture properties, **138**, 41

NaPb<sub>4</sub>(VO<sub>4</sub>)<sub>3</sub> with anion-deficient apatite structure, **141**, 373

Na<sub>4</sub>P<sub>2</sub>S<sub>6</sub>·6H<sub>2</sub>O, single-crystal structure determination, **141**, 274

 $Na_3MS_4$  (M = Nb,Ta), synthesis and crystal structure, 139, 404

Na<sub>3</sub>ScF<sub>6</sub>, single-crystal high-pressure studies, **135**, 116

Na<sub>2</sub>SeO<sub>3</sub>, synthesis in vibrational mill by mechanochemical activation of (SeO<sub>2</sub> + Na<sub>2</sub>CO<sub>3</sub>) mixture, **135**, 256

Na<sub>2</sub>SO<sub>4</sub>, electrical conductivity, effect of aliovalent cation doping, 138, 183

NaLnTiO<sub>4</sub> (Ln = Sm,Eu,Gd) layered perovskites, magnetic properties, 138, 342

NaTl, LiIn and LiCd phases resembling, pressure-induced transformation into  $\beta$ -brass-type alloys, 137, 104

(SeO<sub>2</sub> + Na<sub>2</sub>CO<sub>3</sub>) mixture, mechanochemical activation for synthesis of Na<sub>2</sub>SeO<sub>3</sub> in vibrational mill, **135**, 256

Soft chemistry

CuInP<sub>2</sub>S<sub>6</sub> and Sn<sub>2</sub>P<sub>2</sub>S<sub>6</sub> forms prepared by, 141, 290

Fe<sub>2.5</sub>Ti<sub>0.5</sub>O<sub>4</sub> nanocrystal synthesis, **139**, 66

Sol-gel synthesis

Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> nanocrystals, 141, 70

 $Ln_2$ Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11- $\delta$ </sub> (Ln = La,Nd,Eu,Tb), and simultaneous oxidation, **138.** 141

LaGaO<sub>3</sub> perovskite-type oxide-ion conductor doped with Sr and Mg, 136, 274

TiO<sub>2</sub> derived from, Cu<sup>2+</sup> ions in, TPR, ESR, and XPS study, 138, 1 ultrafine rare earth molybdenum complex oxide particles, 140, 354

ZrO<sub>2</sub> prepared by, tetragonal nanophase stabilization, **135**, 28

 $[(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(RuO_2)_x (0 \le x \le 0.1)$  ceramics, **141**, 282

 $\rm Zr_x Ti_{1-x}O_2$  (x=0.22,0.39,0.60) prepared by, thermal decomposition and phase analysis, **139**, 225

Solid solutions

BaHf<sub>1-x</sub>Zr<sub>x</sub>N<sub>2</sub>, synthesis, structure, and magnetic properties, **137**, 62 6H-Ba(Ti,Fe<sup>3+</sup>,Fe<sup>4+</sup>)O<sub>3- $\delta$ </sub>, structural analysis, **135**, 312

Bi(Bi<sub>12-x</sub>Te<sub>x</sub>O<sub>14</sub>)Mo<sub>4-x</sub>V<sub>1+x</sub>O<sub>20</sub> (0  $\le$  x  $\le$  2.5), synthesis and structural evolution, **139**, 185

(1 - x)Bi<sub>2</sub>O<sub>3</sub>·xCaO,  $\gamma$ -type, short-range order in, electron diffraction study and relationship to low-temperature Ca<sub>4</sub>Bi<sub>6</sub>O<sub>13</sub>, 135, 201

CaO-MnO solid solutions, energies of mixing, ab initio Hartree-Fock study. 137, 261

LiNbO<sub>3</sub> and LiTaO<sub>3</sub> with Mn<sup>2+</sup>, preparation and characterization, **140**, 168

LiTi<sub>2</sub>O<sub>4</sub> and Li<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> ramsdellites linked in, X-ray and neutron diffraction studies. 141, 365

MgO-MnO solid solutions, energies of mixing, *ab initio* Hartree-Fock study, **137**, 261

MnO–NiO solid solutions, energies of mixing, ab initio Hartree–Fock study, 137, 261

Ni<sub>1+m</sub>Sn<sub>1-x</sub>P<sub>x</sub>, B8-type, Sn/P and interstitial Ni ordering in, electron diffraction study, **136**, 125

 $Pb_2MgW_xTe_{(1-x)}O_6$ , dielectric measurements, DSC, structure, and phase diagram, **139**, 332

 $Sr_{2-x}Pb_x(VO)(VO_4)_2$ , structural, IR, and magnetic studies, **140**, 417 Solvothermal synthesis

 $\text{Li}_{1-x}\text{Fe}_{5+x}\text{O}_8$  obtained by, magnetic properties, **141**, 554

MoS<sub>2</sub> nanocrystals from MoO<sub>3</sub> and elemental sulfur, 141, 270

Sonochemical synthesis

copper and silver chalcogenides, 138, 131

Sorption

Cs on Cu<sup>II</sup>Fe<sup>II</sup>(CN)<sub>6</sub> and Cu<sup>II</sup><sub>3</sub>[Fe<sup>III</sup>(CN)<sub>6</sub>]<sub>2</sub>, mechanisms, relationship to crystal structure, **141**, 475

Sphalerite structure

ordering of metal atoms in, 138, 334

Spinels

 $MeAl_2O_4$  (Me = Ni,Co,Cu,Fe), formation from α- and γ- $Al_2O_3$ -supported oxides, 135, 59

Co<sub>x</sub>Cu<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> powders, cation migration and coercivity in, **141**, 56 Fe<sub>2</sub>Mo<sub>1-x</sub>Ti<sub>x</sub>O<sub>4</sub>, electrical resistivity and thermoelectric power measurements, **140**, 56

Li<sub>0.8</sub>[Co<sub>2</sub>]O<sub>4</sub>, structural features, 140, 116

Li-Mn-O oxides

oxygen nonstoichiometry, powder neutron diffraction study, **135**, 132 synthesis and structure, **139**, 290

mechanosynthesized zinc ferrite, structural disorder in, 135, 52

 $Ni_y(Cr_{2-2x}In_{2x})_{1-y}S_{3-y}$ , decomposition and X-ray powder diffraction, 136, 193

precipitation in Al-doped Ni<sub>1-x</sub>O, 140, 38

Zn-Mn spinel ferrites, nanocrystals obtained by high-energy ball milling, chemical homogeneity, **141**, 10

Spin-glass behavior

compounds with YbFe<sub>2</sub>O<sub>4</sub>-type structure, **140**, 337

Cr<sub>2</sub>Sn<sub>3</sub>Se<sub>7</sub>, 137, 249

Spin-lattice relaxation times

order-disorder phase transition in bicyclononanone, 136, 16

Spray pyrolysis

synthesis of doped and undoped nanopowders of tetragonal polycrystalline zirconia, **141**, 191

Stability

AgI:Ag<sub>2</sub>MoO<sub>4</sub> system metastability, **140**, 91

 $Bi_2Sr_2Co_{6+\delta}$  ceramic, **136**, 1

lanthanide aluminum oxide and lanthanide gallium oxide perovskites and garnets, calorimetric study, **141**, 424

 $MO_2$  (M = Ba,Sr,Ca,Mg,Be), *ab initio* quantum mechanical study, **140**, 103

Tl<sub>2</sub>(MoO<sub>3</sub>)<sub>3</sub>PO<sub>3</sub>CH<sub>3</sub>, **138**, 365

Stainless steel

PZT thin film preparation on, with electrochemical reduction, **136**, 293 Stereochemistry

 $Pb^{2+}$  6s<sup>2</sup> lone pair effect in  $Sr_{2-x}Pb_x(VO)(VO_4)_2$  solid solutions, **140**, 417

Pb<sup>II</sup> lone pair in Pb<sup>II</sup>Sn<sup>IV</sup>(PO<sub>4</sub>)<sub>2</sub>, 137, 283

Sb(III) lone pair in [(CH $_3$ NH $_3$ )<sub>1.03</sub>K $_{2.97}$ ]Sb $_{12}$ S $_{20} \cdot 1.34$ H $_2$ O, **140**, 387 Strontium

 $Ba_5Ta_4O_{15}$ –Sr $ZrO_3$  system, hexagonal perovskites in, synthesis and structural study, 141, 492

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>, transformation to Bi<sub>2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub>, 139, 1

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, heavily Pb-substituted single crystals, two-phase microstructures generating efficient pinning centers, **138**, 98

 $Bi_2Sr_2Co_{6+\delta}$  ceramic, stability, oxygen nonstoichiometry, and transformations, 136, 1

 $Bi_{3.6}Sr_{12.4}Mn_8O_{28+\delta}$ , with tubular structure, synthesis and crystal chemistry, 138, 278

(Ca<sub>1-x</sub>Sr<sub>x</sub>)MnO<sub>3</sub>, Mn–O–Mn angles in, relationship to electrical properties, **137**, 82

 $Ca_{1-x}Sr_xNbO_3$  (0  $\leq x \leq$  1) perovskite-type phases, synthesis, structure, and electron microscopy, **141**, 514

CaTiO<sub>3</sub>/SrTiO<sub>3</sub> system, structures in, 139, 238

 $DySr_2Cu_{2.7}Cr_{0.3}O_{7.2} \ and \ DySr_2Cu_{2.7}Mo_{0.3}O_{7.2}, \ crystal \ structures, \\ \textbf{141, } 522$ 

 $\text{Eu}_{2-x}\text{Sr}_x\text{NiO}_{4+\delta}$ , preparation, crystal structure, and reducibility, **141**, 99

IBi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>y</sub>, superconducting intercalates, charge transfer–T<sub>c</sub> relationship. 138, 66

LaGaO<sub>3</sub> perovskite-type oxide-ion conductor doped with, wet chemical synthesis, **136**, 274

 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$  (0.5  $\leq x \leq$  0.9) perovskite, synthesis and properties, 139, 388

 $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4$  (0.25  $\leq x \leq$  1.10), polaronic conduction below room temperature, **139**, 176

 $La_{1-x}Sr_xCrO_3$  ( $x=0\sim0.25$ ) perovskites, magnetic and neutron diffraction study, **141**, 404

La<sub>0.9</sub>Sr<sub>0.1</sub>Ga<sub>0.8</sub>Mg<sub>0.2</sub>O<sub>2.85</sub>, high-temperature powder neutron diffraction study, 139, 135

 $La_{1-x}Sr_xMnO_{3.00}$ , oxidation kinetics, *in situ* powder diffraction studies, **141**, 235

LiI<sub>3</sub>Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> layered cuprate, synthesis and characterization, 141, 452

 $Nd_{0.5}Sr_{0.5}MnO_3,$  charge-ordered states, distinction based on chemical melting,  $137,\ 365$ 

 $Nd_{2-x}Sr_xNiO_y$ , hole-doped and reduced compounds, nickel oxidation state and magnetic properties, **140**, 278

Sr<sup>2+</sup>, doping of Na<sub>2</sub>SO<sub>4</sub>, effect on electrical conductivity, 138, 369

 $Sr_2BN_2X$  (X = F,Cl), compounds with isolated  $BN_2^{3-}$  units, 135, 194

SrCO<sub>3</sub>, thermal decomposition, modeling based on lattice energy changes, 137, 332

Sr<sub>39</sub>Co<sub>12</sub>N<sub>31</sub>, synthesis, structure, and magnetic properties, 141, 1

 $Sr_{2-x}A_xCuO_2F_{2+\delta}$  (A=Ca,Ba) superconductors, synthetic pathways and associated structural rearrangements, 135, 17

 $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$  mixed-conducting materials, structure and property relationships, **141**, 576

 $Sr_4A'Ir_2O_9$  (A' = Cu,Zn), commensurate and incommensurate phases, 136, 103

 $Sr_{1-x}La_xMo_5O_8$  (0  $\leq x \leq$  1), synthesis and metallic properties, 138, 7

 $Ln_{1-x}Sr_xMnO_3$  (Ln = La,Pr,Nd), charge-ordered, effect of internal pressure, letter to editor, 135, 169

 $Sr_2LnMn_2O_7$  (Ln = Y,La,Nd,Eu,Ho), Ruddlesden-Popper phases, HRTEM study, 138, 135

Sr<sub>3</sub>Mn<sub>2</sub>O<sub>7</sub>, crystal and magnetic structures, letter to editor, 141, 599

Sr<sub>2</sub>NbN<sub>3</sub>, synthesis and structural characterization, **138**, 297

 $\rm Sr_4Nb_4O_{14}\text{--}Sr_5Nb_4O_{15}\text{--}SrTiO_3}$  system, perovskite-related phases in, 135, 260

SrNb<sub>2</sub>S<sub>5</sub>, metallic characteristics, 135, 325

Sr<sub>4</sub>Ni<sub>3</sub>O<sub>9</sub>, hexagonal perovskites with one-dimensional structures related to, electron microscopy, **135**, 1

SrO<sub>2</sub>

structure and stability, ab initio quantum mechanical study, 140, 103

thermal decomposition, modeling based on lattice energy changes, 137, 346

Sr<sub>2-x</sub>Pb<sub>x</sub>(VO)(VO<sub>4</sub>)<sub>2</sub> solid solutions, structural, IR, and magnetic studies, **140**, 417

Sr<sub>3</sub>MRhO<sub>6</sub> with K<sub>4</sub>CdCl<sub>6</sub> structure

M = Sm,Eu,Tb,Dy,Ho,Er,Yb, synthesis, characterization, and magnetic properties, 139, 79

M = Y,Sc,In, synthesis and characterization, 139, 416

 $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O$ , synthesis and crystal structure, 140, 134

SrTa<sub>2</sub>S<sub>5</sub>, superconductivity, **135**, 325

Structure, see also Crystal structure

 $AB_2$  crystalline systems, candidates for, determination, 136, 233

activated sintered boron carbide-based materials, 137, 1

alkyltrimethylammonium chromates, 139, 310

 $BaCo_{1-x}Cu_xS_{2-y}$  layered sulfide, 138, 111

 $BaHf_{1-x}Zr_xN_2$  solid solution, 137, 62

6H-Ba(Ti,Fe<sup>3+</sup>,Fe<sup>4+</sup>)O<sub>3- $\delta$ </sub> solid solution, **135**, 312

Bi<sub>2</sub>O<sub>3</sub> systems with Nb<sub>2</sub>O<sub>5</sub>, Ta<sub>2</sub>O<sub>5</sub>, MoO<sub>3</sub>, or WO<sub>3</sub>, review, 137, 42

 ${\rm Bi}_2{\rm S}_3$  thin films prepared by thermal evaporation and chemical bath deposition, 136, 167

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, heavily Pb-substituted single crystals, two-phase microstructures generating efficient pinning centers, 138, 98

Bi<sub>1.74</sub>Ti<sub>2</sub>O<sub>6.62</sub> pyrochlore, **136**, 63

C<sub>60</sub>, high-pressure polymeric phases, packing moels, **141**, 164

calcium-lead hydroxyapatites, 135, 86

 $CaVO_{3-\delta}$  oxygen-deficient phases, 135, 36

 $(Co,Ni,Cu)_{1+x}(Ge,Sn)$  B8-type phases, computer simulation of modulated structures, **135**, 269

cristobalite-related oxides, review, 141, 29

Cs<sub>2</sub>YbNb<sub>6</sub>Br<sub>18</sub>, atomic structure at twin interface, 141, 140

Cu<sub>2</sub>Th<sub>4</sub>(MoO<sub>4</sub>)<sub>9</sub>, 136, 199

hexagonal perovskites, electron microscopy, 135, 1

hydrotalcite-derived MgAlO oxides calcined at varying temperatures, 137, 295

In-Bi<sub>2</sub>S<sub>3</sub> annealed thin films, 138, 290

 $InMO_3(ZnO)_m (M = In,Ga; m = integer)$ , modulated structure described by four-dimensional superspace group, **139**, 347

 $A_2 \operatorname{Ir}_2 \operatorname{O}_{7-y}$  pyrochlores, **136**, 269

LaBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+w</sub> (-0.20 < w < 0.83), cubic perovskite-type phase, <sup>57</sup>Fe Mössbauer spectroscopy, **138**, 87

 $La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3$  perovskites, **138**, 226

 $\text{La}_2\text{Li}_{1/2}M_{1/2}\text{O}_4$  (M(III) = Co,Ni,Cu), orthorhombic variant of  $\text{K}_2\text{NiF}_4$  structure, 138, 18

 $\text{La}_{1-x-y}A_x\text{MnO}_{3-\delta}$  (A = Na,K), 137, 19

 $LaNi_{0.95}M_{0.05}O_3$  (M = Mo, W, Sb, Ti, Cu, Zn) perovskites, 136, 313

 $\text{Li}_3\text{Fe}_2(X\text{O}_4)_3 (X = \text{P,As}), 135, 228$ 

Li-inserted In<sub>16</sub>Fe<sub>8</sub>S<sub>32</sub>, **138**, 193

LiMn<sub>2</sub>O<sub>4</sub>, local structure, X-ray absorption fine structure study, 141, 294

 $\text{Li}_x \text{Ni}_{0.8} \text{Co}_{0.2} \text{O}_2$  system, 136, 8

magnetic

RPtAl (R = Ce, Pr, Nd), 140, 233

Sr<sub>3</sub>Mn<sub>2</sub>O<sub>7</sub>, letter to editor, **141**, 599

mechanosynthesized zinc ferrite, disorder in, 135, 52

Mo<sub>2</sub>O<sub>5</sub>(OCH<sub>3</sub>)<sub>2</sub> and Mo<sub>2</sub>O<sub>5</sub>(OCH<sub>3</sub>)<sub>2</sub>·2CH<sub>3</sub>OH, insights from reaction chemistry and diffraction studies, **136**, 247

Müller-type, related compound  $[NH_3(CH_2)_8NH_3]_3[V_{15}O_{36}(Cl)]$   $(NH_3)_6(H_2O)_3$ , synthesis, 136, 298

 $M_2X$  intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218

[NH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>NH<sub>3</sub>][Ga(PO<sub>4</sub>)(PO<sub>3</sub>OH)], 136, 227

Ni-Fe alloy/magnetite composites, microstructure, 135, 210

nonstoichiometric Li-pseudobrookite(ss) in Li<sub>2</sub>O-Fe<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> system, **141**, 221

 $Pb_2MgW_xTe_{(1-x)}O_6$  solid solution, **139**, 332

 $A_2 Ru_2 O_{7-\nu}$  pyrochlores, **136**, 269

 $Si_x(Ta,Nb)Te_2$ , 139, 105

 $SmTe_{2-x}$  semiconductor superstructure, 140, 300

Sn<sup>4+</sup>-doped indium oxide and In<sub>4</sub>Sn<sub>3</sub>O<sub>12</sub>, **135**, 140

 $Sr_{2-x}A_xCuO_2F_{2+\delta}$  (A=Ca,Ba) superconductors, rearrangements associated with synthetic pathways, 135, 17

 $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$  mixed-conducting materials, 141, 576

Sr<sub>2</sub>LnMn<sub>2</sub>O<sub>7</sub> (Ln = Y,La,Nd,Eu,Ho), microstructure of Ruddlesden–Popper phases, HRTEM study, 138, 135

TaReSe<sub>4</sub> layered crystals, microstructural analysis by electron microscopy and X-ray diffraction, **135**, 235

tubular, Bi<sub>3.6</sub>Sr<sub>12.4</sub>Mn<sub>8</sub>O<sub>28+ $\delta$ </sub> with, synthesis and crystal chemistry, **138**,

YB<sub>56</sub> with YB<sub>66</sub> structure, Y atoms in, digital HREM imaging, **135**, 182 YbFe<sub>2</sub>O<sub>4</sub>-type, compounds with, frustrated magnetism and spin-glass behavior, **140**, 337

Sulfu

AuTa<sub>5</sub>S, synthesis and structure, 139, 45

BaCo<sub>1-x</sub>Cu<sub>x</sub>S<sub>2-y</sub> layered sulfide, synthesis, structure, and properties, 138, 111

 $Ba_6Cu_{12}Fe_{13}S_{27}$ , synthesis and crystal structure, **128**, 62; comment, **137**, 353; reply, **137**, 354

Bi<sub>2</sub>S<sub>3</sub> thin films prepared by thermal evaporation and chemical bath deposition, properties, **136**, 167

CaS:Eu,La, Eu valencies in, 138, 149

CaSO<sub>4</sub>·2H<sub>2</sub>O, dehydration, Controlled transformation Rate Thermal Analysis, **139**, 37

[(CH $_3$ NH $_3$ )1 $_1.03$ K $_2.97$ ]Sb $_12$ S $_20\cdot 1.34$ H $_2$ O, hydrothermal synthesis and crystal structure, **140**, 387

Co<sub>0.33</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, 138, 250

Cs<sub>5</sub>(HSO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, solid acid with unique hydrogen bond network, X-ray diffraction study, **140**, 251

 $\beta$ -Cs<sub>3</sub>(HSO<sub>4</sub>)<sub>2</sub>[H<sub>2-x</sub>(P<sub>1-x</sub>S<sub>x</sub>)O<sub>4</sub>] ( $x \sim 0.5$ ) superprotonic conductor, structure and vibrational spectrum, **139**, 373

CsLiSO<sub>4</sub>, ABW-type, phase transition in, symmetry analysis and atomic distortions, **138**, 267

CuInP<sub>2</sub>S<sub>6</sub>, soft-chemistry forms, **141**, 290

Cu<sub>1.96</sub>S chalcogenides, sonochemical synthesis, **138**, 131

Cu<sub>2</sub>SnS<sub>3</sub>, structure refinement, **139**, 144

Cu<sub>4</sub>Sn<sub>7</sub>S<sub>16</sub>, synthesis, electrical conductivity, and crystal structure, **139**, 144

Cu<sub>0.6</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250

Fe-S materials, mechanochemical synthesis, 138, 114

Fe<sub>0.33</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250

Hg<sub>x</sub>TiS<sub>2</sub>, host-layer restacking in, mechanism, **141**, 330

H<sub>2</sub>O-Na<sub>2</sub>SO<sub>4</sub>-Na<sub>2</sub>HPO<sub>4</sub> system, isotherms, conductivity measurements, 140, 316

In-Bi<sub>2</sub>S<sub>3</sub>, annealed thin films, structural and electrical properties, **138**, 290 In<sub>16</sub>Fe<sub>8</sub>S<sub>32</sub>, lithium-inserted, structure and electrochemical behavior, **138**, 193

In<sub>2</sub>S<sub>3</sub> thin films, study by diffraction of synchrotron radiation, 137, 6

KBi<sub>3</sub>S<sub>5</sub>, open-framework semiconductors, preparation of topotactic derivatives of, letter to editor, **136**, 328

 $LaMS_3$  (M = Ti,V,Cr), high-pressure synthesis, 139, 233

 $La_5Ti_6S_3Cl_3O_{15}$ , synthesis and structural characterization, 139, 220

La<sub>8</sub>Ti<sub>10</sub>S<sub>24</sub>O<sub>4</sub>, synthesis and crystal structure, **136**, 46

Al<sub>13</sub>O<sub>4</sub>(OH)<sub>24</sub>(H<sub>2</sub>O)<sup>7+</sup><sub>12</sub> encapsulation into, and Rietveld structural characterization, **139**, 22

Symmetry studies

phase transition in ABW-type CsLiSO<sub>4</sub>, 138, 267

symmetry reduction in Lewisite, 141, 562

nanocrystals, solvothermal synthesis from MoO<sub>3</sub> and elemental sul-Synchrotron radiation fur, **141**, 270 in determination of Rb<sub>3</sub>Sc<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub> structure, **139**, 299 Na<sub>4</sub>P<sub>2</sub>S<sub>6</sub>·6H<sub>2</sub>O, single-crystal structure determination, **141**, 274 Synthesis, see also Hydrothermal synthesis; Mechanochemical synthesis; Na<sub>2</sub>SO<sub>4</sub>, electrical conductivity, effect of aliovalent cation doping, 138, Sol-gel synthesis Ag<sub>0.7</sub>Mo<sub>3</sub>O<sub>7</sub>(PO<sub>4</sub>) bronze built up from ReO<sub>3</sub>-type slabs, 140, 128  $Ni_{\nu}(Cr_{2-2x}In_{2x})_{1-\nu}S_{3-\nu}$  spinel, decomposition and X-ray powder dif-AuTa<sub>5</sub>S, 139, 45 fraction, **136**, 193 Ba<sub>3</sub>AlO<sub>4</sub>H, 141, 570 Ni<sub>0.25</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250  $BaCo_{1-x}Cu_xS_{2-y}$  layered sulfide, 138, 111 (PbS)<sub>1.18</sub>(TiS<sub>2</sub>)<sub>2</sub>, nanocomposites with poly(ethylene oxide), synthesis Ba<sub>6</sub>Cu<sub>12</sub>Fe<sub>13</sub>S<sub>27</sub>, **128**, 62; comment, **137**, 353; reply, **137**, 354 and characterization, 141, 323  $REBa_2Cu_3O_v$  (RE = Y,Eu,La), shock synthesis, effect of ionic radius difference of  $RE^{3+}$  and  $Ba^{2+}$ , 136, 74  $A_3MS_4$  (A = Na,Rb; M = Nb,Ta), synthesis and crystal structure, 139, BaHfN<sub>2</sub>, 137, 62 Sn<sub>2</sub>P<sub>2</sub>S<sub>6</sub>, soft-chemistry forms, **141**, 290  $BaHf_{1-x}Zr_xN_2$  solid solution, 137, 62  $A_2$ Sn<sub>4</sub>S<sub>9</sub> (A = K,Rb,Cs) layered compounds, flux synthesis and charac-Ba<sub>3</sub>Li<sub>2</sub>Cl<sub>2</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>6</sub> with intersecting tunnel structure, **141**, 587 terization, 141, 17 Ba-Pt-O system ( $\frac{4}{3} < Y = \text{Ba/Pt} < \frac{5}{2}$ ), 140, 194 SrNb<sub>2</sub>S<sub>5</sub>, metallic characteristics, **135**, 325 BaScO<sub>2</sub>F perovskite, 139, 422 SrTa<sub>2</sub>S<sub>5</sub>, superconductivity, **135**, 325  $Ba_5Ta_4O_{15}-MZrO_3$  (M = Ba,Sr) hexagonal perovskites, 141, 492 Ta<sub>3</sub>SBr<sub>7</sub>, crystal structure, 140, 226 BaThN<sub>2</sub>, 138, 297 transition metal carbosulfides, combustion synthesis, 138, 250 Bi(Bi<sub>12-x</sub>Te<sub>x</sub>O<sub>14</sub>)Mo<sub>4-x</sub>V<sub>1+x</sub>O<sub>20</sub> (0  $\leq x \leq$  2.5) solid solution, **139**, 185 WS<sub>2</sub>, Al<sub>13</sub>O<sub>4</sub>(OH)<sub>24</sub>(H<sub>2</sub>O)<sup>7+</sup><sub>12</sub> encapsulation into, and Rietveld structural BiCa<sub>2</sub>VO<sub>6</sub>, **137**, 143 characterization, 139, 22 BiCu<sub>2</sub>VO<sub>6</sub>, 141, 149 Bi<sub>6.67</sub>(PO<sub>4</sub>)<sub>4</sub>O<sub>4</sub>, **139**, 274 [Zn(4,4'-bipy)(H<sub>2</sub>O)(SO<sub>4</sub>)] · 0.5H<sub>2</sub>O coordination polymer with interwoven double-layer structure, synthesis and characterization, 138, 361  $Bi_{3.6}Sr_{12.4}Mn_8O_{28+\delta}$  with tubular structure, 138, 278 ZnS, sphalerite and wurtzite structures, ordering of metal atoms in, 138, Bi<sub>1.74</sub>Ti<sub>2</sub>O<sub>6.62</sub> pyrochlore, **136**, 63 334  $Bi_9(V_{1-x}P_x)_2ClO_{18}$  series  $(0 \le x \le 1)$ , 136, 34 Sulfuric acid  $M_2$ BN<sub>2</sub>X (M = Ca,Sr; X = F,Cl), compounds with isolated BN<sub>2</sub><sup>3</sup> units, nondoped sol-gel ZrO2 prepared with, tetragonal nanophase stabiliza-135, 194 tion, 135, 28  $Ca_xCoO_2$  (0.26  $\leq x \leq$  0.50), **141**, 385 Superconductivity  $Ca_3Co_{1+x}B_{1-x}O_6$  (B = Ir,Ru) one-dimensional oxides, 140, 14 La<sub>x</sub>Mo<sub>6</sub>Se<sub>8</sub> Chevrel-phase superconductor, **136**, 160  $Ca_{1-x}Sr_xNbO_3$  (0  $\leq x \leq 1$ ) perovskite-type phases, **141**, 514 SrTa<sub>2</sub>S<sub>5</sub>, 135, 325 CaTi<sub>2</sub>O<sub>4</sub> with pseudo-brookite-type structure, **141**, 338 Superconductors cesium molybdenum bronze at low temperature, 137, 12  $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$  (Ln = La,Nd,Eu,Tb), sol-gel synthesis and simul- $(C_4H_{12}N_2)_2[Fe_6(HPO_4)_2(PO_4)_6(H_2O)_2]\cdot H_2O \ templated \ by \ piperazine,$ taneous oxidation, 138, 141 **139,** 326 Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, heavily Pb-substituted single crystals, two-phase copper and silver chalcogenides, sonochemical synthesis, 138, 131 microstructures generating efficient pinning centers, 138, 98  $Cr_{2-2x}Mo_xO_3$ , **140**, 350  $Bi_2Sr_2Ca_2Cu_3O_{10}, \ formation \ by \ transformation \ of \ Bi_2Sr_2CaCu_2O_8,$ Cs<sub>3</sub>(HSeO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>PO<sub>4</sub>), **141**, 317  $Cs_5(HSeO_4)_3(H_2PO_4)_2$ , 141, 317 **139,** 1 ErBa<sub>2</sub>Cu<sub>3</sub>O<sub>6.5</sub>, half filling of O intercalation in, new orthorhombicity Cs<sub>2</sub>PdSe<sub>8</sub> with open framework structure with double helical assemblies type and cell volume expansions near, 135, 307 of  $[Pd(Se_4)_2]^{2-}$ , letter to editor, **140**, 149 IBi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>y</sub>, charge transfer-T<sub>c</sub> relationship, **138**, 66  $Cs_4(SeO_4)(HSeO_4)_2(H_3PO_4)$ , 141, 317 La<sub>x</sub>Mo<sub>6</sub>Se<sub>8</sub> Chevrel phase Cs<sub>5</sub>VW<sub>4</sub>O<sub>9</sub>VO<sub>4</sub>(PO<sub>4</sub>)<sub>4</sub> with intersection tunnnels, 141, 155 correlation of  $T_c$  and interatomic distances, 136, 151 CuInP<sub>2</sub>S<sub>6</sub>, soft-chemistry forms, **141**, 290 physical and superconducting properties, 136, 160 Cu<sub>4</sub>Sn<sub>7</sub>S<sub>16</sub>, 139, 144 LiI<sub>3</sub>Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> layered cuprate, synthesis and characterization, 1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, 136, 93 141, 452  $Sr_{2-x}A_xCuO_2F_{2+\delta}$  (A = Ca,Ba), synthetic pathways and associated erbium isopropoxides, 141, 168 structural rearrangements, 135, 17 Er<sub>2</sub>Ti<sub>4</sub>O<sub>2</sub>(OC<sub>2</sub>H<sub>5</sub>)<sub>18</sub>(HOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, **135**, 149 ZrNCl, Li-doped, electronic band structure, 138, 207 Fe2.5Ti0.5O4 nanocrystals, by soft chemistry and high-energy ball mill-Superprotonic conductors ing, 139, 66  $\beta\text{-Cs}_3(\text{HSO}_4)_2[\text{H}_{2-x}(\text{P}_{1-x},\text{S}_x)\text{O}_4] \ (x\sim 0.5), \ \text{structure and vibrational}$ K<sub>4</sub>Bi<sub>2</sub>O<sub>5</sub>, 139, 342  $KLn^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf; Ln^{III} = Ce-Lu$ ), 139, 248 spectrum, 139, 373 Superspace groups  $K_4In_2(PSe_5)_2(P_2Se_6)$ , one-dimensional compounds, 136, 79 four-dimensional, in description of modulated structure of InMO<sub>3</sub> KMgPO<sub>4</sub>, 136, 175 KTb<sup>III</sup>Tb<sub>2</sub><sup>IV</sup>F<sub>12</sub>, **139**, 248  $(ZnO)_m$  (M = In,Ga; m = integer), 139, 347 Surface area  $LaBa_2Fe_3O_{8+w}$  ( -0.20 < w < 0.83), cubic perovskite-type phase, 138, Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> nanocrystals, 141, 70  $\text{La}_4\text{Co}_3\text{O}_{10+\delta}$  (0.00  $\leq \delta \leq$  0.30), **141**, 212 hydrotalcite-derived MgAlO oxides calcined at varying temperatures, LaGaO<sub>3</sub> perovskite-type oxide-ion conductor doped with Sr and Mg, acid/base properties, 137, 295 Na-Fe/SiO<sub>2</sub> catalysts, coordinate geometry, 137, 325  $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$  system, **140**, 377

 $La_{1-x-y}A_xMnO_{3-\delta}$  (A = Na,K), 137, 19

 $LaMS_3$  (M = Ti,V,Cr) at high pressure, 139, 233

 $\text{LaNi}_{1-x}M_x\text{O}_{2.5+\delta}$  (M=Mn,Fe,Co) vacancy-ordered phase, 135, 103

 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$  (0.5 \le x \le 0.9) perovskite, **139**, 388 La<sub>5</sub>Ti<sub>6</sub>S<sub>3</sub>Cl<sub>3</sub>O<sub>15</sub>, **139**, 220 La<sub>8</sub>Ti<sub>10</sub>S<sub>24</sub>O<sub>4</sub>, **136**, 46 LiCoO<sub>2</sub> single crystals, letter to editor, 141, 298  $\text{Li}_{1-x}\text{Fe}_{5+x}\text{O}_8$  by solvothermal reaction, 141, 554 LiI<sub>3</sub>Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> layered cuprate, **141**, 452 Li-Mn-O spinels, **139**, 290  $Li_{0.84}W_{1.16}N_2$  via ammonolysis of LiF-WO<sub>3</sub>, 138, 154 manganese oxides by reduction of KMnO<sub>4</sub> with KBH<sub>4</sub> in aqueous solutions, 137, 28 microwave-assisted, Na<sub>5</sub>[B<sub>2</sub>P<sub>3</sub>O<sub>13</sub>], letter to editor, 140, 154 Mo<sub>2</sub>C 14 nm in average size supported on high specific surface area carbon material, 141, 114 AMoOPO<sub>4</sub>Cl (A = K,Rb) with layer structure, 137, 214 MoS<sub>2</sub> nanocrystals from MoO<sub>3</sub> and elemental sulfur, 141, 270  $NaLnTiO_4$  ( $Ln = Sm_Eu_Gd$ ) layered perovskites, 138, 342 SrTa<sub>2</sub>S<sub>5</sub>, superconductivity, 135, 325  $[N_2C_3H_5][AlP_2O_8H_2 \cdot 2H_2O]$  and  $2[N_2C_3H_5][Al_3P_4O_{16}H]$ , letter to editor, 136, 141 rotation twins, 135, 235  $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$  connected through hydrogen bonding, 139, 207 Ta<sub>3</sub>SBr<sub>7</sub>, crystal structure, 140, 226 NdMo<sub>6</sub>O<sub>12</sub>, ordered hollandite-type compound, **136**, 87 Ta<sub>2</sub>S<sub>2</sub>C, combustion synthesis, **138**, 250 Ti<sub>0.3</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250 [NH<sub>3</sub>(CH<sub>2</sub>)<sub>4</sub>NH<sub>3</sub>][Ga(PO<sub>4</sub>)(PO<sub>3</sub>OH)], 136, 227 [NH<sub>3</sub>(CH<sub>2</sub>)<sub>8</sub>NH<sub>3</sub>]<sub>3</sub>[V<sub>15</sub>O<sub>36</sub>(Cl)](NH<sub>3</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>3</sub>, **136**, 298 Tellurium nitride fluorides, implications of structure of Sn(ND<sub>3</sub>)<sub>2</sub>F<sub>4</sub>, 138, 350  $Pb_2Re_2O_{7-x}$  pyrochlores, 138, 220 poly(ethylene oxide) nanocomposites of misfit layer chalcogenides, 141, 323 Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub>, phase transitions, 135, 175 porous chromia-pillared tetratitanate, 136, 320  $A_2MP_2Se_6$  (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), 138, 321 Rb<sub>12</sub>Nb<sub>6</sub>Se<sub>35</sub> polymer with infinite anionic chains built up by Nb<sub>2</sub>Se<sub>11</sub> units containing Se<sub>3</sub><sup>4-</sup> fragment, **140**, 97 Rb<sub>3</sub>Sc<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, 139, 299 Rb<sub>3</sub>Sn(PSe<sub>5</sub>)(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, 136, 79  $A_3MS_4$  (A = Na,Rb; M = Nb,Ta), 139, 404 ScNiP, 137, 218 Sm<sub>3</sub>NbSe<sub>3</sub>O<sub>4</sub>, **137**, 122 studies, 137, 206  $[Sn_2(PO_4)_2]^{2-}[C_2N_2H_{10}]^{2+} \cdot H_2O$ , 140, 435  $Sn_2P_2S_6$ , soft-chemistry forms, 141, 290  $A_2Sn_4S_9$  (A = K,Rb,Cs) layered compounds, flux synthesis, 141, 17 Sr<sub>39</sub>Co<sub>12</sub>N<sub>31</sub>, 141, 1 chains in, 135, 111  $Sr_{2-x}A_xCuO_2F_{2+\delta}$  (A = Ca,Ba) superconductors, 135, 17  $Sr_{1-x}La_xMo_5O_8$  (0  $\leq x \leq 1$ ) with metallic properties, 138, 7 Sr<sub>2</sub>NbN<sub>3</sub>, 138, 297 Sr<sub>3</sub>MRhO<sub>6</sub> with K<sub>4</sub>CdCl<sub>6</sub> structure-type Zr<sub>3</sub>Te, crystal structure, 139, 213 M = Sm,Eu,Tb,Dy,Ho,Er,Yb, 139, 79Zr<sub>5</sub>Te<sub>4</sub>, crystal structure, **139**, 213 M = Y,Sc,In, 139, 416Temperature tetragonal polycrystalline zirconia, doped and undoped nanopowders, IBi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>v</sub>, 138, 66  $Tl_2Ru_2O_{7-\delta}$  pyrochlore at high pressure, **140**, 182 effects on (K<sub>x</sub>Na<sub>1-x</sub>)MgF<sub>3</sub> perovskites, 141, 121 transition metal carbosulfides, 138, 250 vanadyl pyrophosphate mosaic crystals, 137, 311 tor La<sub>x</sub>Mo<sub>6</sub>Se<sub>8</sub>, **136**, 151 WO<sub>3</sub>, orthorhombic phase formation via Ti-stabilized WO<sub>3</sub> ·  $\frac{1}{3}$ H<sub>2</sub>O Temperature-programmed reduction phase, 135, 159

ZrW<sub>2</sub>O<sub>8</sub> and Mo-substituted ZrW<sub>2</sub>O<sub>8</sub> at low temperature, 139, 424

 $[Zn(4,4'-bipy)(H_2O)(SO_4)] \cdot 0.5H_2O$  coordination polymer with inter-

## Tantalum

AuTa<sub>5</sub>S, synthesis and structure, **139**, 45

woven double-layer structure, 138, 361

 $Ba_5Ta_4O_{15}-MZrO_3$  ( $M = Ba_5Sr$ ) system, hexagonal perovskites in, synthesis and structural study, 141, 492

Bi<sub>2</sub>O<sub>3</sub>-Ta<sub>2</sub>O<sub>5</sub> system, review, 137, 42

 $CeTaO_{4+\delta}$  system, reversible oxidation/reduction in, TEM and XRD study, 140, 20

Co<sub>0.33</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250

CrTa<sub>2</sub>O<sub>6</sub>, trirutile oxide based on Cr<sup>2+</sup>, structure and magnetism,

Cu<sub>0.6</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, 138, 250

Fe<sub>0.33</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250

LiTaO<sub>3</sub> solid solutions with Mn<sup>2+</sup>, preparation and characterization,

 $Mg_5Ta_4O_{15},$  crystal structure refinement by Rietveld analysis of neutron powder diffraction data, 137, 359

Mn<sub>11</sub>Ta<sub>4</sub>O<sub>21</sub>, structure and magnetic susceptibility and refinement of Mn<sub>4</sub>Ta<sub>2</sub>O<sub>9</sub> structure, 137, 276

NaTl, LiIn and LiCd phases resembling, pressure-induced transformation into  $\beta$ -brass-type alloys, 137, 104

Ni<sub>0.25</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, **138**, 250

Si<sub>x</sub>(Ta,Nb)Te<sub>2</sub>, structural and microstructural aspects, 139, 105

TaReSe<sub>4</sub> layered crystals, structure, defect structure, microstructure, and

 $A_3$ TaS<sub>4</sub> (A = Na,Rb), synthesis and crystal structure, 139, 404

 $Bi(Bi_{12-x}Te_xO_{14})Mo_{4-x}V_{1+x}O_{20} \ (0 \le x \le 2.5)$  solid solutions, synthesis and structural evolution, 139, 185

Bi<sub>2</sub>Te<sub>3</sub> single crystals, behavior of Ag admixtures in, 140, 29

Er-Te binary and Er-Te-I ternary systems, nonstoichiometry in, 139,

Pb<sub>1-x</sub>In<sub>x</sub>Te single crystals, point defect clusters revealed by X-ray diffuse scattering method, 137, 119

 $Pb_2MgW_xTe_{(1-x)}O_6$  solid solution, dielectric measurements, DSC, structure, and phase diagram, 139, 332

PdTeI, single-crystal X-ray diffraction and electronic band structure

Sb<sub>2</sub>Te<sub>3</sub> single crystals, behavior of Ag admixtures in, 140, 29

Si<sub>x</sub>(Ta,Nb)Te<sub>2</sub>, structural and microstructural aspects, 139, 105

SmTe<sub>2-x</sub> semiconductor, superstructure, **140**, 300

 $ALn_3Te_8$ , flat Te nets of, site occupancy wave and infinite zigzag  $(Te_2^2)_n$ 

U<sub>3</sub>Te<sub>5</sub>, crystal structure and magnetic properties, 139, 356

ZrTe<sub>3</sub>, crystal structure and electronic band structure, 138, 160

charge transfer-T<sub>c</sub> relationship in superconducting intercalates

T<sub>c</sub> correlation with interatomic distance in Chevrel-phase superconduc-

Cu<sup>2+</sup> in sol-gel-derived TiO<sub>2</sub>, 138, 1

 $Eu_{2-x}Sr_xNiO_{4+\delta}$ , 141, 99

V-Ag catalysts, 141, 186

Terbium

 $KLn^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf; Ln = Ce-Lu$ ), synthesis and crystal structure, 139, 248

KTb<sup>III</sup>Tb<sub>2</sub><sup>IV</sup>F<sub>12</sub>, synthesis and crystal structure, **139**, 248

Sr<sub>3</sub>TbRhO<sub>6</sub>, synthesis, characterization, and magnetic properties, 139,

Tb<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11-δ</sub>, sol-gel synthesis and simultaneous oxidation,

TbBi<sub>2</sub>O<sub>4</sub>NO<sub>3</sub>, preparation and crystal structure, 139, 321

Tb<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201

N,N,N',N'-Tetramethylethylenediamine

zirconium phosphate fluorides templated with, hydrothermal synthesis and crystal structure, **135**, 293

Thallium

TlB<sub>5</sub>O<sub>8</sub>, crystal structure, **136**, 216

 $TlB_5O_6(OH)_4 \cdot 2H_2O$ , dehydration, 136, 216

TICl, TIBr, and TII, defects and ionic conductivity at high pressure and temperature, **141**, 462

Tl<sub>2</sub>(MoO<sub>3</sub>)<sub>3</sub>PO<sub>3</sub>CH<sub>3</sub>, synthesis, structure, and properties, 138, 365

 $TINbXO_6$  (X = W,Mo) ceramics, structural and dielectric properties, 141, 50

Tl<sub>8</sub>Nb<sub>27.2</sub>O<sub>72</sub>, synthesis and crystal structure determination by TEM and single-crystal X-ray diffraction, **135**, 282

 $Tl_2Ru_2O_{7-\delta}$  pyrochlore, high-pressure synthesis, crystal structure, and metal–semiconductor transitions, **140**, 182

Thermal analysis

alkyltrimethylammonium chromates, 139, 310

 $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$  phase transitions to  $V_{0.27}W_{0.73}O_{2.865}$ , 136, 284

NbO(O<sub>2</sub>)<sub>0.5</sub>PO<sub>4</sub>·2H<sub>2</sub>O, 137, 289

Thermal decomposition

BaBPO<sub>5</sub>, 135, 43

solids, modeling based on lattice energy changes

alkaline earth carbonates, 137, 332

alkaline earth peroxides, 137, 346

zinc phenylphosphonate, analysis by temperature-dependent X-ray powder diffraction, **140**, 62

 $Zr_xTi_{1-x}O_2$  (x=0.22,0.39,0.60) prepared by sol-gel synthesis, 139, 225 Thermal evaporation

Bi<sub>2</sub>S<sub>3</sub> thin films prepared by, properties, 136, 167

Thermal expansion

negative, see Negative thermal expansion

Thermal properties

calcium-lead hydroxyapatites, 135, 86

 $C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O$ , 141, 343

 $C_6H_{18}N_3^{2+} \cdot 2HPO_4^- \cdot 4H_2O$ , **141**, 343

CuAl<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>(F,OH)<sub>2</sub>, **141**, 527

K<sub>4</sub>In<sub>2</sub>(PSe<sub>5</sub>)<sub>2</sub>(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, **136**, 79

 $A_2MP_2Se_6$  (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), 138, 321

Rb<sub>3</sub>Sn(PSe<sub>5</sub>)(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, **136**, 79

Thermal stability

Tl<sub>2</sub>(MoO<sub>3</sub>)<sub>3</sub>PO<sub>3</sub>CH<sub>3</sub>, 138, 365

Thermodynamics

 $ACI/TmCI_3$  (A = Cs,Rb,K), 135, 127

point-defect,  $(Mg_xFe_{1-x})_{3-\delta}O_4$ , **139**, 128

Ru-Y system, 138, 302

Thermoelectric power

 $Fe_2Mo_{1-x}Ti_xO_4$  spinel oxides, 140, 56

Thermogravimetry

γ-Fe<sub>2</sub>O<sub>3</sub> nanocrystalline particles, **137**, 185

 $Nd_2O_3$ -Co-Co<sub>2</sub>O<sub>3</sub> system at 1100 and 1150°C, **137**, 255

Thin films

Bi<sub>2</sub>S<sub>3</sub>, prepared by thermal evaporation and chemical bath deposition, properties, 136, 167

diaminoanthraquinone, substitution pattern in, effect on physical properties, 141, 309

In-Bi<sub>2</sub>S<sub>3</sub>, annealed, structural and electrical properties, 138, 290

In<sub>2</sub>S<sub>3</sub>, study by diffraction of synchrotron radiation, 137, 6

 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$   $nH_2O$ , hydrothermal synthesis, **141**, 229

PZT, preparation on stainless steel using electrochemical reduction, 136,

Thorium

BaThN<sub>2</sub>, synthesis and structural characterization, 138, 297

Cu<sub>2</sub>Th<sub>4</sub>(MoO<sub>4</sub>)<sub>9</sub>, structural skeleton, **136**, 199

 $Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3$  perovskite series, structural study, 138, 307

Three-periodic nets

mapped on isomorphic quotient graphs, geometrical relationships between, 138, 55

Thulium

 $ACl/TmCl_3$  (A = Cs,Rb,K), phase diagrams and thermodynamics, 135, 127

 $KTm^{III}M_2^{IV}F_{12}$  ( $M^{IV} = Tb,Zr,Hf$ ), synthesis and crystal structure, 139, 248

Tm<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424

Tm(ClO<sub>4</sub>)<sub>3</sub>, crystalline and molecular structures, 139, 259

Tm<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424

Tm<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201

Tin

 $BaSnO_3$ ,  $Ba_2SnO_4$ , and  $Ba_3Sn_2O_7$ ,  $Pr^{4+}$  doped in, EPR study, 138, 329

(Co,Ni,Cu)<sub>1+x</sub>(Ge,Sn), B8-type phases, modulated structures and diffuse scattering, computer simulation, **135**, 269

Co<sub>1+x</sub>Sn, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402

Cr<sub>2</sub>Sn<sub>3</sub>Se<sub>7</sub>, spin glass-like behavior, 137, 249

Cu<sub>2</sub>SnS<sub>3</sub>, structure refinement, 139, 144

Cu<sub>4</sub>Sn<sub>7</sub>S<sub>16</sub>, synthesis, electrical conductivity, and crystal structure, **139**, 144

Ga-In-Sn-O ceramic, oxygen atomic positions in, determination with direct methods and electron diffraction, letter to editor, 136, 145

 $Ga_{3-x}In_{5+x}Sn_2O_{16}$ , structure, **140**, 242

In<sub>4</sub>Sn<sub>3</sub>O<sub>12</sub>, structural studies, **135**, 140

 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$ , connected through hydrogen bonding, synthesis and structure, **139**, 207

 $Ni_{1+x}Sn$ , nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402

Ni<sub>1+m</sub>Sn<sub>1-x</sub>P<sub>x</sub>, B8-type solid solutions, Sn/P and interstitial Ni ordering in, electron diffraction study, **136**, 125

Pb<sup>II</sup>Sn<sup>IV</sup>(PO<sub>4</sub>)<sub>2</sub>, structure and stereochemical activity of Pb<sup>II</sup> lone pair, 137, 283

Rb<sub>3</sub>Sn(PSe<sub>5</sub>)(P<sub>2</sub>Se<sub>6</sub>), one-dimensional compounds, synthesis, structure, and optical and thermal properties, **136**, 79

Sn<sup>4+</sup>, indium oxide doped with, structural studies, 135, 140

Sn(ND<sub>3</sub>)<sub>2</sub>F<sub>4</sub>, structure, implications for synthesis of nitride fluorides, 138, 350

SnO<sub>2</sub> nanocrystals, structural characterization by X-ray and Raman spectroscopy, 135, 78

 $[Sn_2(PO_4)_2]^2$   $[C_2N_2H_{10}]^2$  ·  $H_2O$ , synthesis and crystal structure, **140**,

Sn<sub>2</sub>(PO<sub>4</sub>)[C<sub>2</sub>O<sub>4</sub>]<sub>0.5</sub> containing one-dimensional tin phosphate chains, synthesis and structure, 139, 200

Sn<sub>2</sub>P<sub>2</sub>S<sub>6</sub>, soft-chemistry forms, 141, 290

 $A_2Sn_4S_9$  (A = K,Rb,Cs) layered compounds, flux synthesis and characterization, **141**, 17

Titanium

Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> nanocrystals, preparation and characterization, **141**, 70

 $Ln_2$ Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11- $\delta$ </sub> (Ln = La, Nd, Eu, Tb), sol-gel synthesis and simultaneous oxidation, **138**, 141

6H-Ba(Ti,Fe<sup>3+</sup>,Fe<sup>4+</sup>)O<sub>3- $\delta$ </sub> solid solution, structural analysis, **135**, 312 B<sub>4</sub>C-Ti<sub>x</sub><sup>IV-VI</sup>B<sub>y</sub>, activated sintered materials, structural and mechanical properties, **137**, 1

 $Bi_{1.74}Ti_2O_{6.62}$  pyrochlore, synthesis and structure, 136, 63

(Ca,Gd)<sub>2</sub>(Al,Ti)O<sub>4</sub>, crystal structure, 139, 204

CaTi<sub>1-2x</sub>Fe<sub>x</sub>Nb<sub>x</sub>O<sub>3</sub> perovskite series, structural study, **138**, 272

CaTiO<sub>3</sub>, Gd-doped, charge compensation in, **124**, 77; comment, **137**, 355; reply, **137**, 357

CaTi<sub>2</sub>O<sub>4</sub> with pseudo-brookite-type structure, synthesis, **141**, 338 CaTiO<sub>3</sub>/SrTiO<sub>3</sub> system, structures in, **139**, 238

 ${\rm Er_2Ti_4O_2(OC_2H_5)_{18}(HOC_2H_5)_2}$ , synthesis, characterization, and structure, 135, 149

Fe<sub>2</sub>Mo<sub>1-x</sub>Ti<sub>x</sub>O<sub>4</sub> spinel oxides, electrical resistivity and thermoelectric power measurements, **140**, 56

Fe<sub>2.5</sub>Ti<sub>0.5</sub>O<sub>4</sub> nanocrystals, obtained by mechanosynthesis and soft chemistry, structure, cation distribution, and properties, **139**, 66

Fe<sub>2.75</sub>Ti<sub>0.25</sub>O<sub>4</sub>, cation distribution in, measurement by *in situ* anomalous powder diffraction with Rietveld refinement, **141**, 105

Hg<sub>x</sub>TiS<sub>2</sub>, host-layer restacking in, mechanism, **141**, 330

 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$  system, synthesis, phase diagram, and conductivity, **140**, 377

LaNi<sub>0.95</sub>Ti<sub>0.05</sub>O<sub>3</sub> perovskites, metal–insulator transitions in, **136**, 313 LaTiS<sub>3</sub>, high-pressure synthesis, **139**, 233

La<sub>5</sub>Ti<sub>6</sub>S<sub>3</sub>Cl<sub>3</sub>O<sub>15</sub>, synthesis and structural characterization, **139**, 220 La<sub>8</sub>Ti<sub>10</sub>S<sub>24</sub>O<sub>4</sub>, synthesis and crystal structure, **136**, 46

 $\text{Li}_2\text{O-Fe}_2\text{O}_3$ -TiO $_2$  system, nonstoichiometric Li-pseudobrookite(ss) in, **141**, 221

Li-Ti-O system, phases formed under reducing conditions, **138**, 74 LiTi<sub>2</sub>O<sub>4</sub> and Li<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> ramsdellites linked in solid solutions, X-ray and neutron diffraction studies, **141**, 365

MgTi<sub>2</sub>O<sub>5</sub>, pseudobrookite-type, crystal chemistry of cation order-disorder in, **138**, 238

MnTi<sub>1-x</sub>Nb<sub>x</sub>O<sub>3</sub> system, magnetic properties, 136, 115

 $Na_{x-\delta}Fe_xTi_{2-x}O_4$  ( $x=0.875, 0 \le \delta \le 0.40$ ), conductivity, **137**, 168  $Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3$  perovskite series, structural study, **138**, 307

 $NaL_{n}TiO_{4}$  (Ln = Sm, Eu, Gd) layered perovskites, magnetic properties, 138, 342

 $Ln_{1-x}Nd_xTiO_3$  ( $Ln=Ce,Pr; 0 \le x \le 1$ ), magnetic studies, letter to editor, 137, 181

(PbS)<sub>1.18</sub>(TiS<sub>2</sub>)<sub>2</sub>, nanocomposites with poly(ethylene oxide), synthesis and characterization, **141**, 323

porous chromia-pillared tetratitanate, synthesis, 136, 320

 $Sm_{1-x}TiO_3$  (x = 0.03,0.05,0.10), magnetic properties, **141**, 262

 $\rm Sr_4Nb_4O_{14} – Sr_5Nb_4O_{15} – SrTiO_3$  system, perovskite-related phases in, 135, 260

TiNX (X = Cl,Br,I) system, electronic band structure, 138, 207  $TiO_2$ 

sol-gel-derived, Cu<sup>2+</sup> ions in, TPR, ESR, and XPS study, **138**, 1 ultrafine particles, electronic state characterization by luminescence spectroscopy, **139**, 124

Ti<sub>3</sub>O<sub>5</sub>, phase transitions, **136**, 67

Ti(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>), crystal structure from neutron powder data, **140**, 266 Ti<sub>2</sub>SC, combustion synthesis, **138**, 250

Ti<sub>0.3</sub>[Ta<sub>2</sub>S<sub>2</sub>C], combustion synthesis, 138, 250

 $WO_3 \cdot \frac{1}{3}H_2O$  phase stabilized by, in formation of orthorhombic  $WO_3$ , 135, 159

 $Zr_xTi_{1-x}O_2$  (x=0.22,0.39,0.60) prepared by sol-gel synthesis, thermal decomposition and phase analysis, 139, 225

Topotactic synthesis

layered calcium cobalt oxides, 141, 385

mosaic crystals of vanadyl pyrophosphate, 137, 311

TPR, see Temperature-programmed reduction

Transmission electron microscopy

CeTaO<sub>4+ $\delta$ </sub> system, analysis of reversible oxidation/reduction, **140**, 20  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanocrystalline particles, **137**, 185

 $InMO_3(ZnO)_m$  (M = In,Ga; m = integer), 139, 347

 $LiCoO_2$ , low-temperature samples and acid-delithiated products, **140**, 116  $Nd_4Ni_3O_8$ , **140**, 307

Tl<sub>8</sub>Nb<sub>27,2</sub>O<sub>72</sub>, 135, 282

UCl<sub>4</sub> and (KCl)<sub>x</sub>(UCl<sub>4</sub>)<sub>y</sub> selectively deposited inside carbon nanotubes using eutectic and noneutectic mixtures of UCl<sub>4</sub> with KCl, **140**, 83  $Y_2Ba_4Cu_7O_{15-\delta}$ , **139**, 266

Tungsten

Ba<sub>2</sub>WO<sub>3</sub>F<sub>4</sub>, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F-<sup>113</sup>Cd REDOR NMR study, **140**, 285

B<sub>4</sub>C-W<sub>x</sub><sup>IV-VI</sup>B<sub>y</sub>, activated sintered materials, structural and mechanical properties, 137, 1

CdWO<sub>3</sub>F<sub>2</sub>, oxygen/fluorine ordering in, <sup>19</sup>F MAS and <sup>19</sup>F<sup>\_113</sup>Cd REDOR NMR study, **140**, 285

Cs<sub>5</sub>VW<sub>4</sub>O<sub>9</sub>VO<sub>4</sub>(PO<sub>4</sub>)<sub>4</sub>, air synthesis and intersection tunnnels, **141**, 155

 $Fe_8V_{10}W_{16}O_{85}$  low-spin  $d^5$  system, magnetic, electrical conductivity, and EPR studies, 137, 223

 $H_{0.27}V_{0.27}W_{0.73}O_3\cdot 1/3H_2O$ , phase transitions to  $V_{0.27}W_{0.73}O_{2.865}$ , X-ray, thermal, and HREM studies, **136**, 284

 $KLi_{1-x}(Nb,W)_5O_9(PO_4)_3$ , synthesis and intersecting tunnel structure related to  $ReO_3$ , 136, 305

LaNi<sub>0.95</sub>W<sub>0.05</sub>O<sub>3</sub> perovskites, metal-insulator transitions in, 136, 313

LiF-WO<sub>3</sub>, ammonolysis, in situ X-ray diffraction study: detection and crystal structure of Li<sub>0.84</sub>W<sub>1.16</sub>N<sub>2</sub>, 138, 154

 $\text{Li}_{0.84}W_{1.16}N_2$ , synthesis by ammonolysis of LiF-WO<sub>3</sub> and crystal structure, **138**, 154

Lu<sub>2</sub>W<sub>3</sub>O<sub>12</sub>, negative thermal expansion, 140, 157

 $ANb_4WO_9(PO_4)_3$  (A = K,Rb,Cs), synthesis and intersecting tunnel structure related to ReO<sub>3</sub>, 136, 305

NH<sub>4</sub>NbWO<sub>6</sub> defect pyrochlore, crystal structure and phase transition, 141. 537

Pb<sub>2</sub>MgW<sub>x</sub>Te<sub>(1-x)</sub>O<sub>6</sub> solid solution, dielectric measurements, DSC, structure, and phase diagram, **139**, 332

 $Pb_x(PO_2)_4(WO_3)_{2m}$  (6  $\leq m \leq$  10) bronze, characterization, 139, 362

Sc<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>, negative thermal expansion, 137, 148

TINbWO<sub>6</sub> ceramics, structural and dielectric properties, 141, 50

 $V_{0.27}W_{0.73}O_{2.865}$ , formation from  $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$ , X-ray, thermal, and HREM studies, **136**, 284

 $WO_3$ 

Bi<sub>2</sub>O<sub>3</sub>-WO<sub>3</sub> system, review, 137, 42

orthorhombic, formation via Ti-stabilized WO<sub>3</sub>·½H<sub>2</sub>O phase, 135, 159

WS<sub>2</sub>, Al<sub>13</sub>O<sub>4</sub>(OH)<sub>24</sub>(H<sub>2</sub>O)<sup>7+</sup><sub>12</sub> encapsulation into, and Rietveld structural characterization, **139**, 22

ZrW<sub>2</sub>O<sub>8</sub> and Mo-substituted ZrW<sub>2</sub>O<sub>8</sub>, low-temperature synthesis, 139, 424

Tunnel structure

Ba<sub>3</sub>Li<sub>2</sub>Cl<sub>2</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>6</sub>, **141**, 587

Cs<sub>5</sub>VW<sub>4</sub>O<sub>9</sub>VO<sub>4</sub>(PO<sub>4</sub>)<sub>4</sub> synthesized in air, **141**, 155

intersecting, related to ReO<sub>3</sub>, tungstoniobium monophosphates with, 136, 305

Twinning

Ba<sub>4</sub>(Ba<sub>x</sub>Pt<sub>1-x</sub><sup>2+</sup>)Pt<sub>2</sub><sup>4+</sup>O<sub>9</sub>, diffraction and DAFS studies, 140, 201

 $CeTaO_{4+\delta}$  system, TEM and XRD study, **140**, 20

Cs<sub>2</sub>YbNb<sub>6</sub>Br<sub>18</sub>, **141**, 140

U

Ultrafine particles

rare earth molybdenum complex oxides, preparation and characterization, 140, 354

Ultraviolet diffuse reflectance spectra

V-Ag catalysts, 141, 186

Ultraviolet-visible spectroscopy

NbO(O<sub>2</sub>)<sub>0.5</sub>PO<sub>4</sub>·2H<sub>2</sub>O, **137**, 289

Uranium

(KCl)<sub>x</sub>(UCl<sub>4</sub>)<sub>y</sub>, deposition inside carbon nanotubes using eutectic and noneutectic mixtures of UCl<sub>4</sub> with KCl, **140**, 83

UAl<sub>3</sub>C<sub>3</sub>, crystal structure, 140, 396

 $UCl_4$ , deposition inside carbon nanotubes using eutectic and noneutectic mixtures of  $UCl_4$  with KCl, 140, 83

U<sub>3</sub>Te<sub>5</sub>, crystal structure and magnetic properties, **139**, 356

p-dialkylbenzene-urea inclusion compounds, order and disorder in, 141, 437

٧

Valence

Eu in CaS:Eu,La, 138, 149

mixed, in Lewisite, 141, 562

Pr in Pr-doped zircon, 139, 412

Vanadium

 $BaV_6O_{16} \cdot nH_2O$ , hydrothermal synthesis and crystal structure, **140**, 219  $Ba_3V_2O_3(PO_4)_3$ , with chain-like structure, **135**, 302

Ba<sub>2</sub>(VO<sub>2</sub>)(PO<sub>4</sub>)(HPO<sub>4</sub>)·H<sub>2</sub>O, with trigonal bipyramidal VO<sub>5</sub> groups, hydrothermal synthesis and crystal structure, **140**, 272

 $B_4C-V_x^{IV-VI}B_y$ , activated sintered materials, structural and mechanical properties, 137, 1

Bi(Bi<sub>12-x</sub>Te<sub>x</sub>O<sub>14</sub>)Mo<sub>4-x</sub>V<sub>1+x</sub>O<sub>20</sub>  $(0 \le x \le 2.5)$  solid solutions, synthesis and structural evolution, **139**, 185

BiCa<sub>2</sub>VO<sub>6</sub>, synthesis and structure, 137, 143

BICOVOX.15, structure, single-crystal neutron diffraction study at room temperature, **141**, 241

BiCu<sub>2</sub>VO<sub>6</sub>, synthesis and structure, 141, 149

 $\text{Bi}_9(V_{1-x}P_x)_2\text{ClO}_{18}$  series  $(0 \le x \le 1)$ , synthesis, crystal structure, IR characterization, and electrical properties, 136, 34

CaVO<sub>3-δ</sub>, oxygen nonstoichiometry, structures, and physical properties, 135, 36

Ca<sub>3</sub>(VO<sub>4</sub>)<sub>2</sub>, amorphization at high pressure, **139**, 161

α-CoV<sub>3</sub>O<sub>8</sub>, crystal structure and metal distribution, 141, 133

 $Cs_5VW_4O_9VO_4(PO_4)_4$ , air synthesis and intersection tunnnels, 141, 155

Fe<sub>8</sub>V<sub>10</sub>W<sub>16</sub>O<sub>85</sub> low-spin d<sup>5</sup> system, magnetic, electrical conductivity, and EPR studies, 137, 223

(H<sub>2</sub>O)[V<sub>2</sub>O<sub>2</sub>(OH){O<sub>3</sub>P(CH<sub>2</sub>)<sub>2</sub>PO<sub>3</sub>}], hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89

 $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$ , phase transitions to  $V_{0.27}W_{0.73}O_{2.865}$ , X-ray, thermal, and HREM studies, **136**, 284

KPb<sub>4</sub>(VO<sub>4</sub>)<sub>3</sub> with anion-deficient apatite structure, **141**, 373

LaVS<sub>3</sub>, high-pressure synthesis, 139, 233

 $(\text{Li}_x \text{V}_{1-x})_3 \text{BO}_5$  ( $x \simeq 0.3$ ), disordered S = 1 system, crystal structure and electronic state, **141**, 418

δLi<sub>x</sub>V<sub>2</sub>O<sub>5</sub> and MgV<sub>2</sub>O<sub>5</sub>, structural comparison, **136**, 56

Mn<sub>0.15</sub>V<sub>0.3</sub>Mo<sub>0.7</sub>O<sub>3</sub>, characterization, **138**, 347

 $NaPb_4(VO_4)_3$  with anion-deficient apatite structure, 141, 373

 $[NH_3(CH_2)_8NH_3]_3[V_{15}O_{36}(Cl)](NH_3)_6(H_2O)_3$ , synthesis and structure, **136**, 298

NH<sub>4</sub>VP<sub>2</sub>O<sub>7</sub>, structural study by X-ray powder diffraction, **136**, 181 Sr<sub>2-x</sub>Pb<sub>x</sub>(VO)(VO<sub>4</sub>)<sub>2</sub> solid solutions, structural, IR, and magnetic studies, **140**, 417

V-Ag catalysts, temperature-programmed reduction, 141, 186

VO<sub>2</sub>, polymorph prepared by soft chemical methods, 138, 178

VO<sub>2</sub>(A), crystal structures and transition mechanism, 141, 594

(VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, mosaic crystals obtained by oriented nucleation and growth, **137**, 311

 $M(\text{VOPO}_4)_2 \cdot 4\text{H}_2\text{O}$  (M = Co(II), Ni(II)), layered compounds with distinct magnetic linear trimers, 137, 77

 $V_{0.27}W_{0.73}O_{2.865}$ , formation from  $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$ , X-ray, thermal, and HREM studies, 136, 284

 $ZrV_2O_7,$  temperature-dependent phase transitions, in situ electron and X-ray diffraction studies, 137, 161

Vibrational analysis

BaFe<sub>12</sub>O<sub>19</sub> hexagonal ferrite, 137, 127

Vibrational mill

 $Na_2SeO_3$  synthesis in, by mechanochemical activation of  $(SeO_2 + Na_2CO_3)$  mixture, 135, 256

Vibronic transitions

Gd<sup>3+</sup> and Eu<sup>3+</sup> in crystalline materials and glasses of same composition, 136, 206

W

Water

Al<sub>13</sub>O<sub>4</sub>(OH)<sub>24</sub>(H<sub>2</sub>O)<sup>7+</sup><sub>12</sub>, encapsulation into MoS<sub>2</sub> and WS<sub>2</sub> and Rietveld structural characterization, **139**, 22

BaV<sub>6</sub>O<sub>16</sub>·nH<sub>2</sub>O, hydrothermal synthesis and crystal structure, **140**, 219 Ba<sub>2</sub>(VO<sub>2</sub>)(PO<sub>4</sub>)(HPO<sub>4</sub>)·H<sub>2</sub>O, with trigonal bipyramidal VO<sub>5</sub> groups, hydrothermal synthesis and crystal structure, **140**, 272

CaHPO<sub>4</sub>· 2H<sub>2</sub>O phosphates, composites with polymer, percolation and modeling of proton conduction in, **141**, 392

CaSO<sub>4</sub>·2H<sub>2</sub>O, dehydration, Controlled transformation Rate Thermal Analysis, **139**, 37

(1:1)  $Cd_3^{II}[(Tr^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O$  complexes (Tr = Co, Fe), structural and spectral studies, **140**, 140

(C<sub>4</sub>H<sub>12</sub>N<sub>2</sub>)<sub>2</sub>[Fe<sub>6</sub>(HPO<sub>4</sub>)<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>2</sub>] · H<sub>2</sub>O templated by piperazine, synthesis and characterization, **139**, 326

[(CH $_3$ NH $_3$ )<sub>1.03</sub>K<sub>2.97</sub>]Sb<sub>12</sub>S<sub>20</sub>·1.34H $_2$ O, hydrothermal synthesis and crystal structure, **140**, 387

 $C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O$ , crystal structure and thermal behavior, **141**, 343

 $C_6H_{18}N_3^{3+} \cdot 2HPO_4^- \cdot 4H_2O$ , crystal structure and thermal behavior, 141, 343

H<sub>2</sub>O-Na<sub>2</sub>SO<sub>4</sub>-Na<sub>2</sub>HPO<sub>4</sub> system, isotherms, conductivity measurements, 140, 316

(H<sub>2</sub>O)[V<sub>2</sub>O<sub>2</sub>(OH){O<sub>3</sub>P(CH<sub>2</sub>)<sub>2</sub>PO<sub>3</sub>}], hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89

 $H_{0.27}V_{0.27}W_{0.73}O_3\cdot 1/3H_2O,$  phase transitions to  $V_{0.27}W_{0.73}O_{2.865},$  X-ray, thermal, and HREM studies,  $136,\,284$ 

hydrated molybdenum bronze, Cs/Na ion exchange and synthesis of cesium molybdenum bronze at low temperature, 137, 12

Mn(ReO<sub>4</sub>)<sub>2</sub>·2H<sub>2</sub>O, crystal structure, **138**, 232

Na<sub>4</sub>P<sub>2</sub>S<sub>6</sub>·6H<sub>2</sub>O, single-crystal structure determination, **141**, 274

NbO( $O_2$ )<sub>0.5</sub>PO<sub>4</sub>·2H<sub>2</sub>O, characterization, 137, 289

 $[N_2C_3H_5][AlP_2O_8H_2\cdot 2H_2O]$  and  $2[N_2C_3H_5][Al_3P_4O_{16}H],$  synthesis and structure, letter to editor, 136, 141

 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$ , connected through hydrogen bonding, synthesis and structure, **139**, 207

 $[NH_3(CH_2)_8NH_3]_3[V_{15}O_{36}(Cl)](NH_3)_6(H_2O)_3,$  synthesis and structure, **136**, 298

Ni<sub>1-x</sub>Zn<sub>2x</sub>(OH)<sub>2</sub>(OCOCH<sub>3</sub>)<sub>2x</sub> nH<sub>2</sub>O thin film, hydrothermal synthesis, 141, 229

role in mechanochemical reactions of MgO-SiO<sub>2</sub> systems, 138, 169

 $[Sn_2(PO_4)_2]^2 - [C_2N_2H_{10}]^{2+} \cdot H_2O,$  synthesis and crystal structure, 140, 435

Sr<sub>10</sub>[Sb<sub>7</sub>O<sub>13</sub>(OH)]<sub>2</sub>[SbSe<sub>3</sub>]<sub>2</sub>Se·2H<sub>2</sub>O, synthesis and crystal structure, **140.** 134

 $TlB_5O_6(OH)_4 \cdot 2H_2O$ , dehydration, 136, 216

 $M(VOPO_4)_2 \cdot 4H_2O$  (M = Co(II),Ni(II)), layered compounds with distinct magnetic linear trimers, 137, 77

 $WO_3 \cdot \frac{1}{3}H_2O$ , Ti-stabilized phase, in formation of orthorhombic  $WO_3$ , 135, 159

zirconium phosphate fluorides templated with amines, hydrothermal synthesis and crystal structure, 135, 293

[Zn(4,4'-bipy)(H<sub>2</sub>O)(SO<sub>4</sub>)] · 0.5H<sub>2</sub>O coordination polymer with interwoven double-layer structure, synthesis and characterization, **138**, 361

 $Zn(O_3PC_6H_5) \cdot H_2O$ , thermal behavior, **140**, 62

Wurtzite structure

ordering of metal atoms in, 138, 334

Χ

XANES, see X-ray absorption near-edge structure

X-ray absorption fine structure

in situ analysis of Jahn-Teller distortion in LiNiO<sub>2</sub>, letter to editor, **140**, 145

lithium manganese oxide local structure, 141, 294

X-ray absorption near-edge structure

 $Nd_{2-x}Sr_xNiO_y$  hole-doped and reduced compounds, **140**, 278

X-ray diffraction, see also Powder X-ray diffraction

Ba<sub>3</sub>AlO<sub>4</sub>H, 141, 570

CeTaO<sub>4+δ</sub> system, analysis of reversible oxidation/reduction, **140**, 20 Cs<sub>5</sub>(HSO<sub>4</sub>)<sub>3</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub> solid acid with unique hydrogen bond network, **140**, 251

γ-Fe<sub>2</sub>O<sub>3</sub> nanocrystalline particles, **137**, 185

Fe<sub>2.5</sub>Ti<sub>0.5</sub>O<sub>4</sub> nanocrystals synthesized by soft chemistry and high-energy ball milling, **139**, 66

In<sub>2</sub>S<sub>3</sub> thin films, synchrotron radiation-based study, 137, 6

 $A_4A'\text{Ir}_2\text{O}_9$  (A = Sr, Ba; A' = Cu, Zn), commensurate and incommensurate phases, 136, 103

 $LiCoO_2$ , low-temperature samples and acid-delithiated products, 140, 116

LiF-WO<sub>3</sub> ammonolysis, *in situ* study: detection and crystal structure of  $\text{Li}_{0.84}\text{W}_{1.16}\text{N}_2$ , **138**, 154

LiTi<sub>2</sub>O<sub>4</sub> and Li<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> ramsdellites linked in solid solutions, **141**, 365 magnesium oxide–magnesium orthophosphate systems, **135**, 96

Na<sub>3</sub>ScF<sub>6</sub>, single-crystal high-pressure studies, 135, 116

 $Pb_x(PO_2)_4(WO_3)_{2m}$  (6  $\leq m \leq$  10) bronze, **139**, 362

PdTeI single crystals, 137, 206

Rb<sub>2</sub>CdCl<sub>4</sub>, 140, 371

Ti<sub>3</sub>O<sub>5</sub>, 136, 67

Tl<sub>8</sub>Nb<sub>27,2</sub>O<sub>72</sub>, single-crystal studies, 135, 282

V-Ag catalysts, 141, 186

 $\rm ZrV_2O_7$ , in situ analysis of temperature-dependent phase transitions, 137, 161

X-ray diffuse scattering

Pb<sub>1-x</sub>In<sub>x</sub>Te single crystals, detection of point defect clusters, 137,

X-ray photoelectron spectroscopy

Cu<sup>2+</sup> in sol-gel-derived TiO<sub>2</sub>, **138**, 1

X-ray spectroscopy

SnO<sub>2</sub> nanocrystals, structural study, 135, 78

Υ

Ytterbium

BiO<sub>1.5</sub>-YbO<sub>1.5</sub>-CuO system, phase relations, 139, 398

Cs<sub>2</sub>YbNb<sub>6</sub>Br<sub>18</sub>, twinning and atomic structure of twin interface, 141,

 $\text{KYb}^{\text{III}}M_2^{\text{IV}}\text{F}_{12}$  ( $M^{\text{IV}}=\text{Tb,Zr,Hf}$ ), synthesis and crystal structure, 139, 248

Sr<sub>3</sub>YbRhO<sub>6</sub>, synthesis, characterization, and magnetic properties, 139,

Yb<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424

YbBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+x</sub> phases, powder neutron and X-ray diffraction studies, 136, 21

YbBi<sub>2</sub>O<sub>4</sub>NO<sub>3</sub>, preparation and crystal structure, 139, 321

YbFe<sub>2</sub>O<sub>4</sub> structure type, compounds with, frustrated magnetism and spin-glass behavior, **140**, 337

Yb<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424

Yttrium

LiYO<sub>2</sub> doped with Eu<sup>3+</sup>, monoclinic and tetragonal structures, refinement, 137, 242

Ru-Y system, calorimetric study with phase diagram optimization, 138, 302

Sr<sub>2</sub>YMn<sub>2</sub>O<sub>7</sub>, Ruddlesden–Popper phases, HRTEM study, **138**, 135 Sr<sub>3</sub>YRhO<sub>6</sub> with K<sub>4</sub>CdCl<sub>6</sub> structure, synthesis and characterization, **139**,

Y<sup>3+</sup>, doping of Na<sub>2</sub>SO<sub>4</sub>, effect on electrical conductivity, 138, 369

YAlO<sub>3</sub> perovskite, stability, calorimetric study, **141**, 424

Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, **141**, 424

Y<sub>4</sub>Al<sub>2</sub>O<sub>9</sub>, high-temperature neutron diffraction study, **141**, 466

YB<sub>56</sub> with YB<sub>66</sub> structure, Y atoms in, digital HREM imaging, 135, 182 YBa<sub>2</sub>Cu<sub>3</sub>O<sub>y</sub>, shock synthesis, effect of ionic radius difference of Y<sup>3+</sup> and Ba<sup>2+</sup>, 136, 74

 $Y_2Ba_4Cu_7O_{15-\delta}$ , TEM and NQR studies, 139, 266

YBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+w</sub> triple perovskites, <sup>57</sup>Fe Mössbauer study, **139**, 168

YBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+x</sub> phases, powder neutron and X-ray diffraction studies, 136, 21

YBi<sub>2</sub>O<sub>4</sub>NO<sub>3</sub>, preparation and crystal structure, 139, 321

 $Y_{0.5}Ca_{0.5}MnO_3,$  charge-ordered states, distinction based on chemical melting,  $\boldsymbol{137},\,365$ 

Y<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> garnet, stability, calorimetric study, 141, 424

Y<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, magnetic and electrical properties, 138, 201

 $[(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(RuO_2)_x \ (0 \le x \le 0.1)$  ceramics, preparation and electrical characterization, **141**, 282

Ζ

Zeolites

ethylenediamine-templated structures related to, in zinc arsenate and cobalt phosphate systems, synthesis, **136**, 210

Zinc

AgZnPO<sub>4</sub>, crystal structure and crystal chemistry, 141, 177

1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and physical properties, 136, 93

ethylenediamine-templated zinc arsenate, synthesis and zeolite-type structure, **136**, 210

EuZnIn intermetallic compounds, <sup>151</sup>Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174

 $InMO_3(ZnO)_m (M = In, Ga; m = integer)$ , modulated structure described by four-dimensional superspace group, **139**, 347

 $LaNi_{0.95}Zn_{0.05}O_3$  perovskites, metal-insulator transitions in, 136, 313

LiZnPO<sub>4</sub>, polymorph with cristobalite-type framework topology, 138, 126

mechanosynthesized zinc ferrite, structural disorder in, 135, 52

 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$   $nH_2O$  thin film, hydrothermal synthesis, **141**, 229

[Zn(4,4'-bipy)(H<sub>2</sub>O)(SO<sub>4</sub>)] · 0.5H<sub>2</sub>O coordination polymer with interwoven double-layer structure, synthesis and characterization, 138, 361

 $A_4$ ZnIr<sub>2</sub>O<sub>9</sub> (A = Sr,Ba), commensurate and incommensurate phases, 136, 103

Zn–Mn spinel ferrites, nanocrystals obtained by high-energy ball milling, chemical homogeneity, **141**, 10

Zn(O<sub>3</sub>PC<sub>6</sub>H<sub>5</sub>)·H<sub>2</sub>O, thermal behavior, 140, 62

 $\gamma\text{-}Zn_2P_2O_7,$  structure determination from X-ray powder diffraction data, 140, 62

 $A_2$ ZnP<sub>2</sub>Se<sub>6</sub> (A = K,Rb,Cs), synthesis, structure, and optical and thermal properties, 138, 321

Zn(ReO<sub>4</sub>)<sub>2</sub> anhydrous perrhenates, crystal structure, 138, 232

ZnS, sphalerite and wurtzite structures, ordering of metal atoms in, 138, 334

Zinc phenylphosphonate

thermal decomposition, analysis by temperature-dependent X-ray powder diffraction, **140**, 62

Zircon

Pr-doped, valence and localization of Pr in, 139, 412

Zirconium

 $BaHf_{1-x}Zr_xN_2$  solid solution, synthesis, structure, and magnetic properties, 137, 62

 $Ba_5Ta_4O_{15}$ – $MZrO_3$  (M=Ba,Sr) system, hexagonal perovskites in, synthesis and structural study, **141**, 492

CeZrO<sub>4</sub> powders, oxygen release behavior and appearance of compounds  $\kappa$  and t\*, 138, 47

ethylenediamine-templated 1-D [enH<sub>2</sub>][Zr(HPO<sub>4</sub>)<sub>3</sub>] and 2-D [enH<sub>2</sub>]<sub>0.5</sub>[Zr(PO<sub>4</sub>)(HPO<sub>4</sub>)], crystal structures, **140**, 46

K<sub>4</sub>Zr<sub>6</sub>Br<sub>18</sub>C, structure, 139, 85

 $KLn^{III}Zr_2^{IV}F_{12}$  ( $Ln^{III}$  = Ce–Lu), synthesis and crystal structure, 139, 248

tetragonal polycrystalline zirconia, doped and undoped nanopowders, synthesis by spray pyrolysis, **141**, 191

zirconium phosphate fluorides templated with amines, hydrothermal synthesis and crystal structure, 135, 293

Zr4+

dissolved in  $Ni_{1-x}O$ , defect clusters and superstructures, **140**, 361 doping of  $Na_2SO_4$ , effect on electrical conductivity, **138**, 369

Zr<sub>3</sub>Al<sub>3</sub>C<sub>5</sub>, crystal structure, **140**, 396

Zr<sub>2.7</sub>Hf<sub>11.3</sub>P<sub>9</sub>, bonding and site preferences, **136**, 221

ZrNX (X = Cl,Br,I) system, electronic band structure, 138, 207  $ZrO_2$ 

monoclinic and tetragonal phases, Mo<sup>v</sup> in, EPR study, **136**, 263 nondoped sol–gels prepared with hydrolysis catalysts, tetragonal nanophase stabilization, **135**, 28

texture properties, effect of supported Na+, 138, 41

 $[(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(RuO_2)_x \ (0 \le x \le 0.1)$  ceramics, preparation and electrical characterization, **141**, 282

ZrTe<sub>3</sub>, crystal structure and electronic band structure, 138, 160

Zr<sub>3</sub>Te, crystal structure, 139, 213

Zr<sub>5</sub>Te<sub>4</sub>, crystal structure, 139, 213

 $Zr_xTi_{1-x}O_2$  (x=0.22,0.39,0.60) prepared by sol-gel synthesis, thermal decomposition and phase analysis, **139**, 225

 $ZrV_2O_7$ , temperature-dependent phase transitions, *in situ* electron and X-ray diffraction studies, **137**, 161

ZrW<sub>2</sub>O<sub>8</sub> and Mo-substituted ZrW<sub>2</sub>O<sub>8</sub>, low-temperature synthesis, 139,