Cumulative Subject Index for Volumes 135–1411 Α Acetic acid nondoped sol-gel ZrO₂ prepared with, tetragonal nanophase stabilization, 135, 28 Acid/base properties hydrotalcite-derived MgAlO oxides calcined at varying temperatures, 137, 295 Acid delithiation LiCoO₂, products of, structural features, 140, 116 Acids solid, $Cs_5(HSO_4)_3(H_2PO_4)_2$ with unique hydrogen bond network, X-ray diffraction study, 140, 251 Aliovalent cation doping effect on electrical conductivity of Na₂SO₄, 138, 183 Alkaline earth carbonates thermal decomposition, modeling based on lattice energy changes, 137, 332 Alkaline earth peroxides thermal decomposition, modeling based on lattice energy changes, 137, 346 1. ω -Alkanediols and 1-alkanols, intercalation into NbOPO₄ and NbOAsO₄, 141, 64 1-Alkanols and 1,ω-alkanediols, intercalation into NbOPO₄ and NbOAsO₄, **141**, 64 Alkyltrimethylammonium chromates layered, thermal and structural studies, 139, 310 Alloys β -brass-type, LiIn and LiCd, formation by pressure-induced transformation of NaTl-type phases, **137**, 104 La₁₂Mn₂Sb₃₀, electronic structure, **139**, 8 Ni-Fe, composites with magnetite, synthesis and microstructure, 135, nonstoichiometric B8-type phases $A_{1+x}B$ (A = Co,Ni; B = Ge,Sn), sinusoidal diffuse scattering loci in, simulation, **140**, 402 Alluaudite structure Na₃Fe₂(AsO₄)₃ transition to, induction by cationic substitutions, 137, $NaFe_{3.67}(PO_4)_3$, **139**, 152 Aluminum Al³⁺, substitution for Mn³⁺ in $Ln_{0.5}A_{0.5}$ MnO₃ (Ln = Nd,Gd,Y; A = Ca,Sr), 137, 365 AlF₃, temperature- and gas-phase-mediated reorganization and paramagnetic doping, **139**, 27 $LnAlO_3$ (Ln = La-Lu, Y) perovskites, stability, calorimetric study, **141**, α -Al₂O₃ and γ -Al₂O₃, oxides supported with, formation of aluminates of Ni, Co, Cu, and Fe from, **135**, 59 $Ln_3Al_5O_{12}$ (Ln = La-Lu, Y) garnets, stability, calorimetric study, **141**, Al₁₃O₄(OH)₂₄(H₂O)⁷⁺₁₂, encapsulation into MoS₂ and WS₂ and Rietveld structural characterization, **139**, 22 Al₂O₃-TiO₂ nanocrystals, preparation and characterization, 141, 70 BaAlO₄H, synthesis and structure, 141, 570 $Ba_2Mg_6Al_{28}O_{50}$, crystal structure, 136, 258 BaO–Al₂O₃–MgO system, Al-rich part phase relationships, **136**, 253 related compound Ba₂Mg₆Al₂₈O₅₀, crystal structure, **136**, 258 (Ca,Gd)₂(Al,Ti)O₄, crystal structure, 139, 204 Ce-Al-(Si,Ge) systems, phase equilibria and physical properties, 137, 191 $CoAl_2O_4$, formation from α - and γ - Al_2O_3 -supported oxides, 135, 59 $CuAl_2O_4$, formation from α - and γ - Al_2O_3 -supported oxides, 135, 59 CuAl₂Si₂O₇(F,OH)₂, hydrothermal synthesis, crystal structure, and properties, **141**, 527 ethylenediamine-templated aluminum cobalt phosphate, synthesis and zeolite-type structure, **136**, 210 FeAl₂O₄, formation from α- and γ-Al₂O₃-supported oxides, 135, 59 hydrotalcite-derived MgAlO oxides calcined at varying temperatures, structural and acid/base properties, 137, 295 $\text{Li}_9\text{Al}_3(P_2O_7)_3(PO_4)_2$, crystal structure and cation transport properties, 138, 32 $[N_2C_3H_5][AlP_2O_8H_2 \cdot 2H_2O]$ and $2[N_2C_3H_5][Al_3P_4O_{16}H]$, synthesis and structure, letter to editor, **136**, 141 NiAl₂O₄, formation from α - and γ -Al₂O₃-supported oxides, 135, 59 $Ni_{1-x}O$ doped with, spinel precipitation in, **140**, 38 RPtAl (R = Ce, Pr, Nd), magnetic structures, 140, 233 ScAl₃C₃, crystal structure, 140, 396 UAl₃C₃, crystal structure, **140**, 396 Y₄Al₂O₉, high-temperature neutron diffraction study, **141**, 466 Zr₃Al₃C₅, crystal structure, **140**, 396 Amines zirconium phosphate fluorides templated with, hydrothermal synthesis and crystal structures. 135, 293 Ammonium anhydrous bisoctyltrimethylammonium dichromate, crystal structure, 139, 310 1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and physical properties, 136, 93 ethylenediamine-templated 1-D $[enH_2][Zr(HPO_4)_3]$ and 2-D $[enH_2]_{0.5}[Zr(PO_4)(HPO_4)]$, crystal structures, **140**, 46 $(NH_4)_x K_{1-x} Bi_3 S_5$, preparation, letter to editor, 136, 328 NH₄NbWO₆ defect pyrochlore, crystal structure and phase transition, **141**, 537 NH₄VP₂O₇, structural study by X-ray powder diffraction, **136**, 181 Ammonium hydroxide nondoped sol-gel ZrO₂ prepared with, tetragonal nanophase stabilization, 135, 28 Ammonolysis LiF–WO₃, in situ X-ray diffraction study: detection and crystal structure of $\text{Li}_{0.84}\text{W}_{1.16}\text{N}_2$, 138, 154 Amorphization $Ca_3(VO_4)_2$ at high pressure, 139, 161 GeSe₂ at high pressure, 141, 248 ¹Boldface numbers indicate volume; lightface numbers indicate pagnation. Annealing In-Bi₂S₃ thin films, effects on structural and electrical properties, 138, 290 Antiferromagnets GdAgGe, GdAuGe, GdAu_{0.44(1)}In_{1.56(1)}, and GdAuIn, structure, bonding, magnetic susceptibility, and ¹⁵⁵Gd Mössbauer spectroscopy, **141**, 352 Antimony $[(CH_3NH_3)_{1.03}K_{2.97}]Sb_{12}S_{20} \cdot 1.34H_2O$, hydrothermal synthesis and crystal structure, **140**, 387 La₁₂Mn₂Sb₃₀ alloy, electronic structure, **139**, 8 LaNi_{0.95}Sb_{0.05}O₃ perovskites, metal–insulator transitions in, **136**, 313 M_2 Sb intermetallics, nonmetal insertion in h.c.-like metallic distribution, **135**, 218 SbRe₂O₆ with Re–Re bond, preparation, crystal structure, and electrical resistivity, **138**, 245 Sb₂Te₃ single crystals, behavior of Ag admixtures in, 140, 29 $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O$, synthesis and crystal structure, 140, 134 Apatite anion-deficient structure, in lead alkali orthovanadates, **141**, 373 NaLa₉(GeO₄)₆O₂, single-crystal growth and structure determination, **139**, 304 Arsenic M_2 As intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218 ethylenediamine-templated zinc arsenate, synthesis and zeolite-type structure, **136**, 210 Li₃Fe₂(AsO₄)₃, cathode materials for rechargeable lithium batteries, 3D framework structure, 135, 228 LiNi(AsO₄), spectroscopic and magnetic properties and crystal structure refinement, 141, 508 $Na_3Fe_2(AsO_4)_3$, cationic substitutions, associated transition from garnet to alluaudite structure, 137, 112 NaNi(AsO₄), spectroscopic and magnetic properties, 141, 508 NbOAsO₄, intercalation of 1-alkanols and 1,ω-alkanediols into, **141**, 64 Rb₂MoO₂As₂O₇, preparation and crystal structure, **141**, 500 Rb₃Sc₂(AsO₄)₃, synthesis and structure determination by synchrotron single crystal methods, **139**, 299 Atomic distortions in phase transition in ABW-type CsLiSO₄, 138, 267 Atomic position oxygen in Ga-In-Sn-O ceramic, determination with direct methods and electron diffraction, letter to editor, **136**, 145 В Ball milling formation of Ag and Cu metals from hemioxides, 136, 51 high-energy, nanocrystalline Zn-Mn spinel ferrites obtained by, chemical homogeneity, **141**, 10 Barium Ba²⁺, doping of Na₂SO₄, effect on electrical conductivity, **138**, 369 Ba₃AlO₄H, synthesis and structure, **141**, 570 $Ba_4(Ba_xPt_{1-x}^{2+})Pt_2^{4+}O_9$ twinned crystal, diffraction and DAFS studies, 140, 201 Ba₂BiGa₁₁O₂₀, preparation and crystal structure, 138, 313 BaBiO₃, disproportionation in, stabilization, contrast with stabilization of spontaneous polarization of H₂ molecules, **138**, 369 BaBPO₅, crystal structure and thermal decomposition, 135, 43 BaCO₃, thermal decomposition, modeling based on lattice energy changes, 137, 332 BaCo_{1-x}Cu_xS_{2-y} layered sulfide, synthesis, structure, and properties, 138, 111 Ba₆Cu₁₂Fe₁₃S₂₇, synthesis and crystal structure, **128**, 62; comment, **137**, 353; reply, **137**, 354 $REBa_2Cu_3O_y$ (RE = Y,Eu,La), shock synthesis, effect of ionic radius difference of RE^{3+} and Ba^{2+} , 136, 74 Ba-Cu-O-Cl system, phase diagram, 141, 378 Ba₂Cu₃O₄Cl₂ and Ba₃Cu₂O₄Cl₂, magnetic properties, **141**, 378 Ln_2 Ba $_2$ Cu $_2$ Ti $_2$ O $_{11-\delta}$ (Ln = La,Nd,Eu,Tb), sol-gel synthesis and simultaneous oxidation, 138, 141 $BaFe_{12}O_{19}$ hexagonal ferrite, Raman spectra and vibrational analysis, 137. 127 $RBa_2Fe_3O_{8+x} \ phases \ (R=La,Nd,Sm,Gd,Dy,Er,Yb,Lu,Y), \ powder \ neutron \ and \ X-ray \ diffraction \ studies, \ 136,\ 21$ $REBa_2Fe_3O_{8+w}$ triple perovskites (RE = Dy,Er,Y), ⁵⁷Fe Mössbauer study, **139**, 168 $BaGa_{12}O_{19}$, magnetoplumbite-type compound, preparation and crystal structure, 136, 120 BaHfN₂, synthesis, structure, and magnetic properties, 137, 62 $BaHf_{1-x}Zr_xN_2$ solid solution, synthesis, structure, and magnetic properties, 137, 62 $Ba_4A'Ir_2O_9$ (A' = Cu,Zn), commensurate and incommensurate phases, 136, 103 Ba₃Li₂Cl₂(MoO)₄(PO₄)₆ with intersecting tunnel structure, synthesis, 141, 587 Ba₂Mg₆Al₂₈O₅₀, crystal structure, **136**, 258 Ba₂MoO₃F₄, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd REDOR NMR study, **140**, 285 BaO. structure and stability, *ab initio* quantum mechanical study, **140**, 103 thermal decomposition, modeling based on lattice energy changes, **137**, 346 BaO-Al₂O₃-MgO system, Al-rich part phase relationships, 136, 253 related compound Ba₂Mg₆Al₂₈O₅₀, crystal structure, 136, 258 Ba-Pt-O system $(\frac{4}{3} < Y = \text{Ba/Pt} < \frac{5}{2})$, synthesis and crystal structure, **140**, 194 BaScO₂F perovskite, synthesis and structure, 139, 422 $BaSnO_3$, Ba_2SnO_4 , and $Ba_3Sn_2O_7$, Pr^{4+} doped in, EPR study, 138, 329 ${\rm Ba_5Ta_4O_{15}}$ – ${\rm MZrO_3}$ ($M={\rm Ba,Sr}$) system, hexagonal perovskites in, synthesis and structural study, **141**, 492 BaThN₂, synthesis and structural characterization, 138, 297 6H-Ba(Ti,Fe³⁺,Fe⁴⁺)O_{3- δ} solid solution, structural analysis, 135, 312 $BaV_6O_{16} \cdot nH_2O$, hydrothermal synthesis and crystal structure, **140**, 219 $Ba_3V_2O_3(PO_4)_3$, with chain-like structure, **135**, 302 Ba₂(VO₂)(PO₄)(HPO₄)·H₂O, with trigonal bipyramidal VO₅ groups, hydrothermal synthesis and crystal structure, **140**, 272 Ba₂WO₃F₄, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd REDOR NMR study, **140**, 285 ErBa₂Cu₃O_{6.5}, half filling of O intercalation in, new orthorhombicity type and cell volume expansions near, 135, 307 Eu₃Ba₂Mn₂Cu₂O₁₂, electronic and magnetic properties, effects of cationic substitution, **141**, 546 La_{1-x}Ba_xCoO₃ ceramics, conductivity and IR absorption, 137, 211 ${ m LaBa_2Fe_3O_{8+w}}$ (-0.20 < w < 0.83), cubic perovskite-type phase, $^{57}{ m Fe}$ Mössbauer spectroscopy, **138**, 87 ${\rm Sr_{2-x}Ba_xCuO_2F_{2+\delta}}$ superconductors, synthetic pathways and associated structural rearrangements, 135, 17 $Y_2Ba_4Cu_7O_{15-\delta}$, TEM and NQR studies, 139, 266 Basicity, see also Acid/base properties oxidic systems, bulk optical basicity table for, 137, 94 rechargeable lithium, $\text{Li}_3\text{Fe}_2(X\text{O}_4)_3$ (X = P,As) cathode materials for, 3D framework structure, 135, 228 Beryllium AgBePO₄, crystal structure and crystal chemistry, 141, 177 BeO₂, structure and stability, *ab initio* quantum mechanical study, **140**, 103 β-Brass-type alloys LiIn and LiCd, formation by pressure-induced transformation of NaTltype phases, 137, 104 Bicyclononanone order-disorder phase transition in, spectroscopic and differential scanning calorimetric studies, **136**, 16 4,4'-Bipyridine [Zn(4,4'-bipy)(H₂O)(SO₄)]·0.5H₂O coordination polymer with interwoven double-layer structure, synthesis and characterization, **138**, 361 Bismuth Ba₂BiGa₁₁O₂₀, preparation and crystal structure, **138**, 313 BaBiO₃, disproportionation in, stabilization, contrast with stabilization of spontaneous polarization of H₂ molecules, **138**, 369 Bi³⁺, electronic lone pair configuration in modulated Bi-2212 type oxides, **139**, 194 $Bi(Bi_{12-x}Te_xO_{14})Mo_{4-x}V_{1+x}O_{20}~(0\leq x\leq 2.5)$ solid solutions, synthesis and structural evolution, $139,\,185$ BiCa₂VO₆, synthesis and structure, 137, 143 BICOVOX.15, structure, single-crystal neutron diffraction study at room temperature, **141**, 241 BiCu₂VO₆, synthesis and structure, 141, 149 Bi₂O₃, systems with Nb₂O₅, Ta₂O₅, MoO₃, or WO₃, review, 137, 42 $(1-x)Bi_2O_3 \cdot xCaO$ γ -type solid solution, short-range order in, electron diffraction study and relationship to low-temperature $Ca_4Bi_6O_{13}$, $RBi_2O_4NO_3$ (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), preparation and crystal structure, **139**, 321 BiO_{1.5}-YbO_{1.5}-CuO system, phase relations, 139, 398 Bi_{6.67}(PO₄)₄O₄, synthesis and crystal structure, 139, 274 Bi₂S₃, thin films prepared by thermal evaporation and chemical bath deposition, properties, **136**, 167 Bi₂Sr₂CaCu₂O₈, transformation to Bi₂Sr₂Ca₂Cu₃O₁₀, 139, 1 Bi₂Sr₂CaCu₂O_{8+δ}, heavily Pb-substituted single crystals, two-phase microstructures generating efficient pinning centers, 138, 98 $Bi_2Sr_2Co_{6+\delta}$ ceramic, stability, oxygen nonstoichiometry, and transformations, 136, 1 $Bi_{3.6}Sr_{12.4}Mn_8O_{28+\delta},$ with tubular structure, synthesis and crystal chemistry, $138,\,278$ Bi₂Te₃ single crystals, behavior of Ag admixtures in, 140, 29 Bi₂Te₄O₁₁, phase transitions, **135**, 175 Bi_{1.74}Ti₂O_{6.62} pyrochlore, synthesis and structure, 136, 63 $Bi_9(V_{1-x}P_{x/2}ClO_{18}$ series $(0 \le x \le 1)$, synthesis, crystal structure, IR characterization, and electrical properties, 136, 34 $\text{Ca}_4 \text{Bi}_6 \text{O}_{13}$, low-temperature, relationship to short-range order in $(1-x) \text{Bi}_2 \text{O}_3 \cdot x \text{CaO}$ γ -type solid solution, 135, 201 IBi₂Sr₂CaCu₂O_y, superconducting intercalates, charge transfer-T_c relationship, 138, 66 $In-Bi_2S_3$, annealed thin films, structural and electrical properties, 138, 290 K₄Bi₂O₅, synthesis and crystal structure, 139, 342 KBi_3S_5 , open-framework semiconductors, preparation of topotactic derivatives of, letter to editor, 136, 328 LiI₃Bi₂Sr₂CaCu₂O₈ layered cuprate, synthesis and characterization, 141, 452 Bisoctyltrimethylammonium dichromate anhydrous, crystal structure, 139, 310 Bonding in GdAgGe, GdAuGe, GdAu_{0.44(1)}In_{1.56(1)}, and GdAuIn antiferromagnets, **141**, 352 in $\text{Li}_{1-x}\text{H}_x\text{IO}_3$ -type complex crystals, 135, 121 MO_6 polyhedra in compounds related to $La_2Li_{1/2}M_{1/2}O_4$ (M(III) = Co, Ni, Cu), 138, 18 Re-Re, SbRe₂O₆ with, preparation, crystal structure, and electrical resistivity, 138, 245 Sc-Sc in ScNiP, 137, 218 in Zr_{2.7}Hf_{11.3}P₉, **136**, 221 Boron M_2 B intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218 BaBPO₅, crystal structure and thermal decomposition, 135, 43 $B_4C-Me_x^{IV-Vi}B_y$ (Me=Ti,V,Cr,W), activated sintered materials, structural and mechanical properties, 137, 1 M_2 BN₂X (M = Ca,Sr; X = F,Cl), compounds with isolated BN₂³⁻ units, 135, 194 Ln₃(BO₃)₂F₃ (Ln = Sm,Eu,Gd), ab initio structure determination, **139**, 52 KBH₄, reduction of KMnO₄ in aqueous solutions: synthesis of manganese oxides, **137**, 28 $LaB_3O_6,$ crystalline and glass modifications, vibronic transitions of $Gd^{3\,+}$ and $Eu^{3\,+}$ in, $136,\,206$ $(\text{Li}_x \text{V}_{1-x})_3 \text{BO}_5$ ($x \simeq 0.3$), disordered S = 1 system, crystal structure and electronic state, **141**, 418 Na₅[B₂P₃O₁₃], hydrothermal and microwave-assisted synthesis, letter to editor, **140**, 154 TlB₅O₈, crystal structure, 136, 216 $TlB_5O_6(OH)_4 \cdot 2H_2O$, dehydration, 136, 216 YB_{56} with YB_{66} structure, Y atoms in, digital HREM imaging, 135, 182 Bromine Cs₂YbNb₆Br₁₈, twinning and atomic structure of twin interface, **141**, 140 K₄Zr₆Br₁₈C, structure, **139**, 85 MNBr (M = Zr,Ti) system, electronic band structure, 138, 207 Ta₃SBr₇, crystal structure, 140, 226 TIBr, defects and ionic conductivity at high pressure and temperature, 141, 462 2-Bromo-2-nitropropane-1,3-diol crystals, kinetics and mechanism of prephase state accumulation and phase transition, 137, 231 Bronze Ag_{0.7}Mo₃O₇(PO₄), built up from ReO₃-type slabs, synthesis, structure, and properties, 140, 128 H_xMoO_3 , protonic locations in, 141, 255 hydrated molybdenum bronze, Cs/Na ion exchange and synthesis of cesium molybdenum bronze at low temperature, 137, 12 $Pb_x(PO_2)_4(WO_3)_{2m}$ (6 \le m \le 10), characterization, **139**, 362 Brownmillerite La₂Co₂O₅, structure and magnetic properties, **141**, 411 Brushite composites with polymer, percolation and modeling of proton conduction in, **141**, 392 С Cadmium (1:1) $Cd_3^{II}[(Tr^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O$ complexes (Tr = Co, Fe), structural and spectral studies, **140**, 140 Cd₄P₂Cl₃, crystal structure, 137, 138 Cd₇P₄Cl₆, crystal structure, 137, 138 A_2 CdP₂Se₆ (A = K,Rb,Cs), synthesis, structure, and optical and thermal properties, 138, 321 CdWO₃F₂, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd REDOR NMR study, **140**, 285 LiCd, pressure-induced phase transformation from NaTl-type phases to β -brass-type alloys, **137**, 104 Rb₂CdCl₄, X-ray diffraction and electronic structure, 140, 371 Calcium BiCa₂VO₆, synthesis and structure, 137, 143 (1 – x)Bi₂O₃ · xCaO γ-type solid solution, short-range order in, electron diffraction study and relationship to low-temperature Ca₄Bi₆O₁₃, 135, 201 Bi₂Sr₂CaCu₂O₈, transformation to Bi₂Sr₂Ca₂Cu₃O₁₀, **139**, 1 Bi₂Sr₂CaCu₂O_{8+δ}, heavily Pb-substituted single crystals, two-phase microstructures generating efficient pinning centers, 138, 98 $Ca_4Bi_6O_{13}$, low-temperature, relationship to short-range order in $(1-x)Bi_2O_3 \cdot xCaO$ γ -type solid solution, 135, 201 Ca_2BN_2X (X = F,Cl), compounds with isolated BN_2^{3-} units, 135, 194 $CaCl_2$, structure candidates, determination, 136, 233 CaCO₃, thermal decomposition, modeling based on lattice energy changes, 137, 332 Ca_xCoO_2 (0.26 $\leq x \leq$ 0.50), topotactic synthesis, **141**, 385 $\text{Ca}_3\text{Co}_{1-x}B_{1+x}\text{O}_6$ (B=Ir,Ru), one-dimensional oxides, synthesis and magnetic properties, **140**, 14 CaF₂, structure candidates, determination, 136, 233 CaFe_{1/2}Nb_{1/2}O₃, crystal chemistry, 138, 272 (Ca,Gd)₂(Al,Ti)O₄, crystal structure, 139, 204 CaHPO₄·2H₂O phosphates, composites with polymer, percolation and modeling of proton conduction in, **141**, 392 Ln_{0.5}Ca_{0.5}MnO₃ (Ln = Nd,Gd,Y), charge-ordered states, distinction based on chemical melting, 137, 365 $Ln_{1-x}Ca_xMnO_3$ (Ln = La,Pr,Nd), charge-ordered, effect of internal pressure, letter to editor, **135**, 169 α -Ca₃N₂, vibrational spectra and decomposition, **137**, 33 structure and stability, *ab initio* quantum mechanical study, **140**, 103 thermal decomposition, modeling based on lattice energy changes, **137**, 346 CaO-MnO solid solutions, energy of mixing, ab initio Hartree-Fock study, 137, 261 Ca–Pb hydroxyapatites, thermal and structural properties and oxidation of methane, 135, 86 CaS:Eu,La, Eu valencies in, 138, 149 CaSO₄·2H₂O, dehydration, Controlled transformation Rate Thermal Analysis, **139**, 37 $(Ca_{1-x}Sr_x)MnO_3$, Mn–O–Mn angles in, relationship to electrical properties, 137, 82 $Ca_{1-x}Sr_xNbO_3$ (0 $\leq x \leq$ 1) perovskite-type phases, synthesis, structure, and electron microscopy, **141**, 514 $CaTi_{1-2x}Fe_xNb_xO_3$ perovskite series, structural study, 138, 272 CaTiO₃, Gd-doped, charge compensation in, **124**, 77; comment, **137**, 355; reply, **137**, 357 CaTi₂O₄ with pseudo-brookite-type structure, synthesis, **141**, 338 CaTiO₃/SrTiO₃ system, structures in, 139, 238 ${\rm CaVO_{3-\delta}},$ oxygen nonstoichiometry, structures, and physical properties, 135, 36 Ca₃(VO₄)₂, amorphization at high pressure, 139, 161 IBi₂Sr₂CaCu₂O_y, superconducting intercalates, charge transfer–T_c relationship, **138**, 66 (La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O₃, electrical properties, effect of Ge⁴⁺, **140**, 431 La_{2/3}Ca_{1/3}Mn_{1-x}In_xO₃ perovskites, structural, magnetic, and electrical properties, **138**, 226 La_{0.2}Ca_{0.8}MnO₃, structural and morphological changes associated with charge ordering, 140, 331 La_{1-x}Ca_xMnO₃, structure, stoichiometry, and phase purity, 140, 320 LiI₃Bi₂Sr₂CaCu₂O₈ layered cuprate, synthesis and characterization, 141, 452 $Sr_{2-x}Ca_xCuO_2F_{2+\delta}$ superconductors, synthetic pathways and associated structural rearrangements, 135, 17 substitution for Eu in Eu₃Ba₂Mn₂Cu₂O₁₂, effects on electronic and magnetic properties, 141, 546 substitution for Na⁺ in Na₃Fe₂(AsO₄)₃, associated transition from garnet to alluaudite structure, **137**, 112 Calorimetry differential scanning, see Differential scanning calorimetry lanthanide aluminum oxide and lanthanide gallium oxide perovskites and garnets, stability study, **141**, 424 Ru-Y system, 138, 302 Carbon alkaline earth carbonates, thermal decomposition, modeling based on lattice energy changes, 137, 332 anhydrous bisoctyltrimethylammonium dichromate, crystal structure, 139, 310 $B_4C-Me_x^{IV-VI}B_y$ (Me = Ti, V, Cr, W), activated sintered materials, structural and mechanical properties. 137, 1 C₆₀, packing models of high-pressure polymeric phases, **141**, 164 (1:1) $Cd_3^{II}[(Tr^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O$ complexes (Tr = Co, Fe), structural and spectral studies, **140**, 140 [(CH₃)₂N(CH₂CH₂)₂O]Ag₄I₅, silver ion distribution and flow in, cooperative disorder model, **140**, 1 (C₄H₁₂N₂)₂[Fe₆(HPO₄)₂(PO₄)₆(H₂O)₂] · H₂O templated by piperazine, synthesis and characterization, **139**, 326 [(CH $_3$ NH $_3$)_{1.03}K_{2.97}]Sb₁₂S₂₀·1.34H $_2$ O, hydrothermal synthesis and crystal structure, **140**, 387 $C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O$, crystal structure and thermal behavior, **141**, 343 C₆H₁₈N₃²⁺·2HPO₄-·4H₂O, crystal structure and thermal behavior, 141, 343 Co_{0.33}[Ta₂S₂C], combustion synthesis, 138, 250 Cu₂^IFe^{II}(CN)₆ and Cu₃^I[Fe^{II}(CN)₆]₂, mechanisms of Cs sorption on, relationship to crystal structure, **141**, 475 $Cu_{0.6}[Ta_2S_2C]$, combustion synthesis, **138**, 250 1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and physical properties, 136, 93 diglycine hydrogen selenite, crystal structure, vibrational spectra, and DSC measurement, **140**, 71 Er₂Ti₄O₂(OC₂H₅)₁₈(HOC₂H₅)₂, synthesis, characterization, and structure, **135**, 149 ethylenediamine-templated 1-D $[enH_2][Zr(HPO_4)_3]$ and 2-D $[enH_2]_{0.5}[Zr(PO_4)(HPO_4)]$, crystal structures, **140**, 46 ethylenediamine-templated zinc arsenate and aluminum cobalt phosphate, synthesis and zeolite-type structures, **136**, 210 $Fe_{0.33}[Ta_2S_2C]$, combustion synthesis, 138, 250 (H₂O)[V₂O₂(OH){O₃P(CH₂)₂PO₃}], hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89 K₄Zr₆Br₁₈C, structure, **139**, 85 Mo₂C 14 nm in average size supported on high specific surface area carbon material, synthesis, **141**, 114 monoglycine-selenious acid crystals, vibrational spectra and DSC measurement, 140, 71 $Mo_2O_5(OCH_3)_2$ and $Mo_2O_5(OCH_3)_2 \cdot 2CH_3OH,$ structural analysis, 136, 247 nanotubes, selective deposition of UCl_4 and $(KCl)_x(UCl_4)_y$ in, using eutectic and noneutectic mixtures of UCl_4 with KCl, 140, $[N_2C_3H_5][AlP_2O_8H_2\cdot 2H_2O]$ and $2[N_2C_3H_5][Al_3P_4O_{16}H]$, synthesis and structure, letter to editor, 136, 141 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$, connected through hydrogen bonding, synthesis and structure, **139**, 207 [NH₃(CH₂)₄NH₃][Ga(PO₄)(PO₃OH)], synthesis and characterization, 136, 227 $[NH_{3}(CH_{2})_{8}NH_{3}]_{3}[V_{15}O_{36}(Cl)](NH_{3})_{6}(H_{2}O)_{3},$ synthesis and structure, $136,\ 298$ Ni_{0.25}[Ta₂S₂C], combustion synthesis, **138**, 250 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$ nH_2O thin film, hydrothermal synthesis, 141, 229 ScAl₃C₃, crystal structure, **140**, 396 (SeO₂ + Na₂CO₃) mixture, mechanochemical activation for synthesis of Na₂SeO₃ in vibrational mill, **135**, 256 $R_3Si_2C_2$ (R = Y,La-Nd,Sm,Gd-Tm), magnetic and electrical properties, 138, 201 $[Sn_2(PO_4)_2]^2^-[C_2N_2H_{10}]^{2+}\cdot H_2O,$ synthesis and crystal structure, 140, 435 Sn₂(PO₄)[C₂O₄]_{0.5} containing one-dimensional tin phosphate chains, synthesis and structure, **139**, 200 Ta₂S₂C, combustion synthesis, **138**, 250 Ti₂SC, combustion synthesis, 138, 250 Ti_{0.3} [Ta₂S₂C], combustion synthesis, **138**, 250 Tl₂(MoO₃)₃PO₃CH₃, synthesis, structure, and properties, **138**, 365 transition metal carbosulfides, combustion synthesis, 138, 250 UAl₃C₃, crystal structure, **140**, 396 Zn(O₃PC₆H₅)·H₂O, thermal behavior, 140, 62 Zr₃Al₃C₅, crystal structure, 140, 396 #### Cathodes fuel-cell, lanthanun strontium manganate(III)(IV) materials for, oxidation kinetics, *in situ* powder diffraction studies, **141**, 235 $\text{Li}_3\text{Fe}_2(XO_4)_3$ (X = P,As) materials for rechargeable lithium batteries, 3D framework structure, 135, 228 Cation order-disorder crystal chemistry in pseudobrookite-type MgTi₂O₅, 138, 238 Cation site splitting in Lewisite, **141**, 562 Cation transport in $\text{Li}_9M_3(P_2O_7)_3(PO_4)_2$ (M = Al,Ga,Cr,Fe), 138, 32 in mixed copper-cobalt spinel ferrite powders, 141, 56 Cell volume expansions near half filling of O intercalation in ErBa₂Cu₃O_{6.5}, 135, 307 Ceramics ${\rm Bi_2Sr_2Co_{6+\delta}},$ stability, oxygen nonstoichiometry, and transformations, 136. 1 Ga-In-Sn-O, oxygen atomic positions in, determination with direct methods and electron diffraction, letter to editor, **136**, 145 La_{1-x}Ba_xCoO₃, conductivity and IR absorption, 137, 211 $\mathrm{Sn^4}^+$ -doped indium oxide and $\mathrm{In_4Sn_3O_{12}}$, structural studies, 135, 140 $\mathrm{Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}}$ mixed-conducting materials, structure and property relationships, 141, 576 TINb XO_6 (X = W,Mo), structural and dielectric properties, **141**, 50 [(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(ZrO_2)₁ (ZrO_2)₂ (ZrO_2)₁ (ZrO_2)₂ (ZrO_2)₂ (ZrO_2)₃ (ZrO_2)₄ (ZrO_2)₄ (ZrO_2)₅ (ZrO_2)₆ (ZrO_2)₇ (ZrO_2)₇ (ZrO_2)₇ (ZrO_2)₈ (ZrO_2)₉) (ZrO ## Cerium Ce⁴⁺, doping of Na₂SO₄, effect on electrical conductivity, **138**, 369 Ce–Al–(Si,Ge) systems, phase equilibria and physical properties, **137**, 191 Ce(ClO₄)₃, crystalline and molecular structures, **139**, 259 Ce–Mo ultrafine particles, preparation and characterization, **140**, 354 $Ce_{1-x}Nd_xTiO_3$ ($0 \le x \le 1$), magnetic studies, letter to editor, **137**, 181 Ce₃Si₂C₂, magnetic and electrical properties, 138, 201 CePtAl, magnetic structure, 140, 233 $CeTaO_{4+\delta}$ system, reversible oxidation/reduction in, TEM and XRD study, **140**, 20 $CeZrO_4$ powders, oxygen release behavior and appearance of compounds κ and t^* , 138, 47 $CsCe_3Te_8$, flat Te nets of, site occupancy wave and infinite zigzag $(Te_2^2)_n$ chains in, 135, 111 $Cu_xCe_{1-x}O_{2-y}$ nanocrystals, emf measurements, **140**, 295 $KCe^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf$), synthesis and crystal structure, 139, RbCe₃Te₈, flat Te nets of, site occupancy wave and infinite zigzag $(\text{Te}_2^{2-})_n$ chains in, 135, 111 #### Cesium CsCe₃Te₈, flat Te nets of, site occupancy wave and infinite zigzag $(Te_2^{2-})_n$ chains in, 135, 111 CsCl/TmCl₃, phase diagrams and thermodynamics, 135, 127 Cs₃(HSeO₄)₂(H₂PO₄), synthesis and crystal structure, **141**, 317 Cs₅(HSeO₄)₃(H₂PO₄)₂, synthesis and crystal structure, **141**, 317 Cs₅(HSO₄)₃(H₂PO₄)₂, solid acid with unique hydrogen bond network, X-ray diffraction study, **140**, 251 β -Cs₃(HSO₄)₂[H_{2-x}(P_{1-x},S_x)O₄] ($x \sim 0.5$) superprotonic conductor, structure and vibrational spectrum, **139**, 373 CsLiSO₄, ABW-type, phase transition in, symmetry analysis and atomic distortions, 138, 267 CsMnHP₃O₁₀, magnetic structure and properties, 141, 160 Cs/Na ion exchange on hydrated molybdenum bronze and synthesis of cesium molybdenum bronze at low temperature, 137, 12 CsNb₄WO₉(PO₄)₃, synthesis and intersecting tunnel structure related to ReO₃, **136**, 305 Cs_2PdSe_8 , synthesis and open framework structure with double helical assemblies of $[Pd(Se_4)_2]^{2-}$, letter to editor, **140**, 149 $Cs_2MP_2Se_6$ (M = Pd,Zn,Cd,Hg), synthesis, structure, and optical and thermal properties, 138, 321 $Cs_4(SeO_4)(HSeO_4)_2(H_3PO_4)$, synthesis and crystal structure, 141, 317 Cs₂Sn₄S₉ layered compounds, flux synthesis and characterization, 141, Cs₅VW₄O₉VO₄(PO₄)₄, air synthesis and intersection tunnnels, **141**, 155 Cs₂YbNb₆Br₁₈, twinning and atomic structure of twin interface, **141**, 140 sorption on Cu^{II}Fe^{II}(CN)₆ and Cu^{II}₃[Fe^{II}(CN)₆]₂, mechanisms, relationship to crystal structure, **141**, 475 ## Chalcogenides copper- and silver-based, sonochemical synthesis, 138, 131 misfit layer, poly(ethylene oxide) nanocomposites of, synthesis and characterization, **141**, 323 ## Charge compensation in Gd-doped CaTiO₃, **124**, 77; comment, **137**, 355; reply, **137**, 357 Charge density wave properties $Ag_{0.7}Mo_3O_7(PO_4)$ bronze built up from ReO_3 -type slabs, $\textbf{140},\ 128$ Charge-ordered states in $Ln_{0.5}A_{0.5}$ MnO₃ (Ln = Nd,Gd,Y; A = Ca,Sr), distinction based on chemical melting, 137, 365 ## Charge ordering in $La_{0.2}Ca_{0.8}MnO_3$, associated structural and morphological changes, 140, 331 Charge transfer $-T_c$ relationship in superconducting intercalates IBi₂Sr₂CaCu₂O_y, **138**, 66 Chemical bath deposition Bi₂S₃ thin films prepared by, properties, **136**, 167 ## Chevrel phase superconductor La_xMo₆Se₈ correlation of T_c and interatomic distances, 136, 151 physical and superconducting properties, **136**, 160 ## Chlorine Ba-Cu-O-Cl system, phase diagram, 141, 378 Ba₂Cu₃O₄Cl₂ and Ba₃Cu₂O₄Cl₂, magnetic properties, **141**, 378 $Ba_3Li_2Cl_2(MoO)_4(PO_4)_6$ with intersecting tunnel structure, synthesis, 141, 587 $\text{Bi}_9(V_{1-x}P_x)_2\text{ClO}_{18}$ series $(0 \le x \le 1)$, synthesis, crystal structure, IR characterization, and electrical properties, 136, 34 M_2 BN₂Cl (M = Ca,Sr), compounds with isolated BN₂³ units, **135**, 194 CaCl₂, structure candidates, determination, **136**, 233 Cd₄P₂Cl₃, crystal structure, **137**, 138 Cd₇P₄Cl₆, crystal structure, 137, 138 Ln(ClO₄)₃ (Ln = La,Ce,Pr,Sm,Eu,Ho,Er,Tm,Lu), crystalline and molecular structures, 139, 259 $ACI/TmCl_3$ (A = Cs,Rb,K), phase diagrams and thermodynamics, 135, 127 (KCl)_x(UCl₄)_y, deposition inside carbon nanotubes using eutectic and noneutectic mixtures of UCl₄ with KCl, **140**, 83 La₅Ti₆S₃Cl₃O₁₅, synthesis and structural characterization, **139**, 220 $MgCl_2$, structure candidates, determination, 136, 233 $AMoOPO_4Cl$ (A = K,Rb), synthesis and layer structure, 137, 214 MNCl (M = Zr, Ti) system, electronic band structure, 138, 207 $[NH_3(CH_2)_8NH_3]_3[V_{15}O_{36}(Cl)](NH_3)_6(H_2O)_3,$ synthesis and structure, **136**, 298 Rb₂CdCl₄, X-ray diffraction and electronic structure, 140, 371 TICl, defects and ionic conductivity at high pressure and temperature, 141, 462 UCl₄, deposition inside carbon nanotubes using eutectic and noneutectic mixtures of UCl₄ with KCl, **140**, 83 #### Chromium anhydrous bisoctyltrimethylammonium dichromate, crystal structure, 139, 310 $B_4C-Cr_x^{IV-VI}B_y$, activated sintered materials, structural and mechanical properties, 137, 1 (1:1) $Cd_3^{\parallel}[(Tr^{\parallel}/Cr^{\parallel})(CN)_6]_2 \cdot 15H_2O$ complexes (Tr = Co,Fe), structural and spectral studies, **140**, 140 Cr^{3+} , substitution for Mn^{3+} in $Ln_{0.5}A_{0.5}MnO_3$ (Ln = Nd,Gd,Y; A = Ca,Sr), 137, 365 $Cr_{2-2x}Mo_xO_3$, preparation and characterization, 140, 350 $Cr(SeO_2OH)(Se_2O_5)$, modifications of, crystal structures and electronic absorption spectra, 135, 70 Cr₂Sn₃Se₇, spin glass-like behavior, 137, 249 CrTa₂O₆, trirutile oxide based on Cr²⁺, structure and magnetism, 140, 7 DySr₂Cu_{2.7}Cr_{0.3}O_{7.2}, crystal structure, **141**, 522 LaCrS₃, high-pressure synthesis, crystal structure, and electrical and magnetic properties, **139**, 233 $La_{1-x}Sr_xCrO_3~(x=0\sim0.25)$ perovskites, magnetic and neutron diffraction study, 141, 404 Li₉Cr₃(P₂O₇)₃(PO₄)₂, crystal structure and cation transport properties, 138, 32 $Ni_y(Cr_{2-2x}In_{2x})_{1-y}S_{3-y}$ spinel, decomposition and X-ray powder diffraction, 136, 193 porous chromia-pillared tetratitanate, synthesis, 136, 320 Clays fluorohectorite heterostructures, intercalation process in formation of, analysis, 139, 281 ## CMR manganites n=2 layered, Mn⁴⁺ parent compound of, letter to editor, **141**, 599 Cobalt $BaCo_{1-x}Cu_xS_{2-y}$ layered sulfide, synthesis, structure, and properties, 138, 111 BICOVOX.15, structure, single-crystal neutron diffraction study at room temperature, **141**, 241 $Bi_2Sr_2Co_{6+\delta}$ ceramic, stability, oxygen nonstoichiometry, and transformations, 136, 1 Ca_xCoO_2 (0.26 $\leq x \leq$ 0.50), topotactic synthesis, **141**, 385 $\text{Ca}_3\text{Co}_{1-x}B_{1+x}\text{O}_6$ (B=Ir,Ru), one-dimensional oxides, synthesis and magnetic properties, **140**, 14 (1:1) $Cd_{10}^{11}[(Co^{11}/Cr^{011})(CN)_{6}]_{2}\cdot 15H_{2}O$ complexes, structural and spectral studies, **140**, 140 $CoAl_2O_4$, formation from α - and γ - Al_2O_3 -supported oxides, 135, 59 Co_xCu_{1-x}Fe₂O₄ spinel powders, cation migration and coercivity in, Co_{1+x}Ge , nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402 (Co,Ni,Cu)_{1+x}(Ge,Sn) B8-type phases, modulated structures and diffuse scattering, computer simulation, **135**, 269 Co(ReO₄)₂ anhydrous perrhenates, crystal structure, 138, 232 Co_{1+x}Sn, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402 Co_{0.33}[Ta₂S₂C], combustion synthesis, 138, 250 α-CoV₃O₈, crystal structure and metal distribution, 141, 133 Co(II)(VOPO₄)₂·4H₂O, layered compounds with distinct magnetic linear trimers, **137**, 77 ethylenediamine-templated aluminum cobalt phosphate, synthesis and zeolite-type structure, **136**, 210 La_{1-x}Ba_xCoO₃ ceramics, conductivity and IR absorption, 137, 211 La₂Co₂O₅, crystal structure and magnetic properties, **141**, 411 $\text{La}_4\text{Co}_3\text{O}_{10+\delta}$ (0.00 $\leq \delta \leq$ 0.30), synthesis, crystal structure, and magnetic properties, **141**, 212 La₂Li_{1/2}Co_{1/2}O₄, ordered K₂NiF₄ structure and bonding properties of MO₆ polyhedra in related compounds, **138**, 18 $LaNi_{1-x}Co_xO_{2.5+\delta}$, vacancy-ordered phase, synthesis and crystal structure, **135**, 103 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$ (0.5 $\leq x \leq$ 0.9) perovskite, synthesis and properties, 139, 388 $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4$ (0.25 $\leq x \leq$ 1.10), polaronic conduction below room temperature, **139**, 176 LiCoO- low-temperature samples and acid-delithiated products, structural features, 140, 116 single crystals, synthesis and structure refinement, letter to editor, **141**, 298 Li_xNi_{0.8}Co_{0.2}O₂ system, structural, electrochemical, and physical properties, **136**, 8 Nd₂O₃-Co-Co₂O₃ system, thermogravimetric study at 1100 and 1150°C, **137**, 255 Sr₃₉Co₁₂N₃₁, synthesis, structure, and magnetic properties, **141**, 1 $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$ mixed-conducting materials, structure and property relationships, **141**, 576 ## Coercivity in mixed copper-cobalt spinel ferrite powders, 141, 56 Colossal magnetoresistance manganites n = 2 layered, Mn⁴⁺ parent compound of, letter to editor, **141**, 599 Combustion synthesis transition metal carbosulfides, 138, 250 Composite microporous compounds MIL-5, hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89 Computer simulation modulated structures and diffuse scattering in B8-type (Co,Ni,Cu)_{1+x} (Ge,Sn) phases, 135, 269 sinusoidal diffuse scattering loci in nonstoichiometric B8-type alloy phases $A_{1+x}B$ ($A={\rm Co,Ni};\ B={\rm Ge,Sn}$), 140, 402 Conductivity, see also Electrical conductivity; Ionic conductivity H₂O-Na₂SO₄-Na₂HPO₄ system isotherms, **140**, 316 Conoscopy (1:1) $Cd_{3}^{II}[(Tr^{II}/Cr^{III})(CN)_{6}]_{2} \cdot 15H_{2}O$ complexes (Tr = Co,Fe), 140, 140 Controlled transformation Rate Thermal Analysis gypsum dehydration, 139, 37 Convergent beam electron diffraction $Ga_{3-x}In_{5+x}Sn_2O_{16}$, 140, 242 Cooperative disorder model silver ion distribution and flow in one-dimensional ionic conductor $[(CH_3)_2N(CH_2CH_2)_2O]Ag_4I_5$, 140, 1 Coordination polymers [Zn(4,4'-bipy)(H₂O)(SO₄)] · 0.5H₂O, with interwoven double-layer structure, synthesis and characterization, **138**, 361 Coppei $BaCo_{1-x}Cu_xS_{2-y}$ layered sulfide, synthesis, structure, and properties, 138, 111 ``` Ba₆Cu₁₂Fe₁₃S₂₇, synthesis and crystal structure, 128, 62; comment, 137, cation order-disorder in pseudobrookite-type MgTi₂O₅, 138, 238 353; reply, 137, 354 KMgPO₄, 136, 175 REBa_2Cu_3O_y (RE = Y,Eu,La), shock synthesis, effect of ionic radius (K_xNa_{1-x})MgF_3 perovskites in P-T-X space, 141, 121 difference of RE^{3+} and Ba^{2+}, 136, 74 La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3 system, 140, 377 Ba-Cu-O-Cl system, phase diagram, 141, 378 Nd_6Ni_{2-x}Si_3 and Nd_{42}Ni_{22-x}Si_{31}, 137, 302 Ba₂Cu₃O₄Cl₂ and Ba₃Cu₂O₄Cl₂, magnetic properties, 141, 378 Crystal field analysis LiYO₂ doped with Eu³⁺, refinement of monoclinic and tetragonal struc- Ln_2Ba_2Cu_2Ti_2O_{11-\delta} (Ln = La,Nd,Eu,Tb), sol-gel synthesis and simul- taneous oxidation, 138, 141 tures, 137, 242 BiCu₂VO₆, synthesis and structure, 141, 149 Crystal growth BiO_{1.5}-YbO_{1.5}-CuO system, phase relations, 139, 398 NaLa₉(GeO₄)₆O₂ apatite single crystals, 139, 304 Bi₂Sr₂CaCu₂O₈, transformation to Bi₂Sr₂Ca₂Cu₃O₁₀, 139, 1 Crystal structure Bi₂Sr₂CaCu₂O_{8+δ}, heavily Pb-substituted single crystals, two-phase Ag_{0.7}Mo₃O₇(PO₄) bronze built up from ReO₃-type slabs, 140, 128 AgXPO_4 (X = Be,Zn), 141, 177 microstructures generating efficient pinning centers, 138, 98 Co_xCu_{1-x}Fe₂O₄ spinel powders, cation migration and coercivity in, Al₂O₃-TiO₂ nanocrystals, 141, 70 141, 56 anhydrous bisoctyltrimethylammonium dichromate, 139, 310 (Co,Ni,Cu)_{1+x}(Ge,Sn) B8-type phases, modulated structures and diffuse AuTa₅S, 139, 45 Ba₃AlO₄H, 141, 570 scattering, computer simulation, 135, 269 Cu2+ in sol-gel-derived TiO2, TPR, ESR, and XPS study, 138, 1 Ba₂BiGa₁₁O₂₀, 138, 313 CuAl_2O_4, formation from \alpha- and \gamma-Al_2O_3-supported oxides, 135, 59 BaBPO₅, 135, 43 CuAl₂Si₂O₇(F,OH)₂, hydrothermal synthesis, crystal structure, and Ba₆Cu₁₂Fe₁₃S₂₇, 128, 62; comment, 137, 353; reply, 137, 354 properties, 141, 527 BaGa₁₂O₁₉, magnetoplumbite-type compound, 136, 120 BaHfN₂, 137, 62 Cu_xCe_{1-x}O_{2-y} nanocrystals, emf measurements, 140, 295 Cu₂^{II}Fe^{II}(CN)₆ and Cu₃^{II}[Fe^{III}(CN)₆]₂, mechanisms of Cs sorption on, Ba₂Mg₆Al₂₈O₅₀, 136, 258 relationship to crystal structure, 141, 475 Ba-Pt-O system (\frac{4}{3} < Y = \text{Ba/Pt} < \frac{5}{2}), 140, 194 CuInP₂S₆, soft-chemistry forms, 141, 290 BaScO₂F perovskite, 139, 422 A_4CuIr₂O₉ (A = Sr,Ba), commensurate and incommensurate phases, Ba_5Ta_4O_{15}-MZrO_3 (M = Ba,Sr) hexagonal perovskites, 141, 492 BaThN₂, 138, 297 136, 103 Cu_{1.96}S, Cu₃Se₂, and αCu₂Se chalcogenides, sonochemical synthesis, BaV_6O_{16} \cdot nH_2O, 140, 219 138, 131 Ba₃V₂O₃(PO₄)₃, chain-like structure, 135, 302 Cu₂SnS₃, structure refinement, 139, 144 Ba₂(VO₂)(PO₄)(HPO₄)·H₂O with trigonal bipyramidal VO₅ groups, Cu₄Sn₇S₁₆, synthesis, electrical conductivity, and crystal structure, 139, 140, 272 Bi(Bi_{12-x}Te_xO_{14})Mo_{4-x}V_{1+x}O_{20} \ (0 \le x \le 2.5) solid solution, evolu- Cu_{0.6}[Ta₂S₂C], combustion synthesis, 138, 250 tion, 139, 185 Cu₂Th₄(MoO₄)₉, structural skeleton, 136, 199 BiCa₂VO₆, 137, 143 DySr_2Cu_{2.7}Cr_{0.3}O_{7.2} and DySr_2Cu_{2.7}Mo_{0.3}O_{7.2}, crystal structures, BICOVOX.15, single-crystal neutron diffraction study at room temper- 141, 522 ature. 141, 241 ErBa₂Cu₃O_{6,5}, half filling of O intercalation in, new orthorhombicity BiCu₂VO₆, 141, 149 type and cell volume expansions near, 135, 307 RBi_2O_4NO_3 (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), 139, 321 Eu₃Ba₂Mn₂Cu₂O₁₂, electronic and magnetic properties, effects of Bi_{6.67}(PO₄)₄O₄, 139, 274 cationic substitution, 141, 546 Bi_9(V_{1-x}P_x)_2ClO_{18} series (0 \le x \le 1), 136, 34 M_2BN₂X (M = Ca,Sr; X = F,Cl), compounds with isolated BN₂³⁻ units, IBi₂Sr₂CaCu₂O_v, superconducting intercalates, charge transfer–T_c rela- tionship, 138, 66 La₂Li_{1/2}Cu_{1/2}O₄, ordered K₂NiF₄ structure and bonding properties of Ln_3(BO_3)_2F_3 (Ln = Sm_2Eu_3Gd), ab initio determination, 139, 52 MO₆ polyhedra in related compounds, 138, 18 Ca_3Co_{1+x}B_{1-x}O_6 (B = Ir,Ru) one-dimensional oxides, 140, 14 La_{2-x}Nd_xCuO_4 system, structural transitions, 140, 345 (Ca,Gd)₂(Al,Ti)O₄, 139, 204 LaNi_{0.95}Cu_{0.05}O₃ perovskites, metal-insulator transitions in, 136, 313 \alpha-Ca₃N₂, 137, 33 LiI₃Bi₂Sr₂CaCu₂O₈ layered cuprate, synthesis and characterization, Ca_{1-x}Sr_xNbO_3 (0 \leq x \leq 1) perovskite-type phases, 141, 514 141, 452 CaTi_{1-2x}Fe_xNb_xO₃ perovskite series, 138, 272 metal formation from hemioxides by low-energy mechanochemistry, CaTi₂O₄, 141, 338 136, 51 CaTiO₃/SrTiO₃ system, 139, 238 Nd₄Cu₂O₇, cooperatively distorted T' type structure, 136, 137 (1:1) Cd_3^{II}[(Tr^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O complexes (Tr = Co, Fe), 140, 140 (Ni_{6-x}Cu_x)MnO₈, crystal structure and magnetic properties, 135, 322 Cd₄P₂Cl₃, 137, 138 Sr_{2-x}A_xCuO_2F_{2+\delta} (A = Ca,Ba) superconductors, synthetic pathways Cd₇P₄Cl₆, 137, 138 and associated structural rearrangements, 135, 17 CeTaO_{4+\delta} system, TEM and XRD study, 140, 20 Y_2Ba_4Cu_7O_{15-\delta}, TEM and NQR studies, 139, 266 (C₄H₁₂N₂)₂[Fe₆(HPO₄)₂(PO₄)₆(H₂O)₂]⋅H₂O templated by piperazine, Coulometric titration 139, 326 [(CH_3NH_3)_{1.03}K_{2.97}]Sb_{12}S_{20} \cdot 1.34H_2O, 140, 387 measurement of nonstoichiometry of (Mg_xFe_{1-x})_{3-\delta}O_4, 139, 128 Cristobalite C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O, 141, 343 related framework topology, in LiZnPO₄ polymorph, 138, 126 C_6H_{18}N_3^{2+} \cdot 2HPO_4^- \cdot 4H_2O, 141, 343 Ln(ClO_4)_3 (Ln = La, Ce, Pr, Sm, Eu, Ho, Er, Tm, Lu), 139, 259 related oxide structures, review, 141, 29 Crystal chemistry \alpha-CoV₃O₈, 141, 133 AgXPO_4 (X = Be,Zn), 141, 177 Cr(SeO₂OH)(Se₂O₅), 135, 70 CrTa₂O₆ trirutile oxide based on Cr²⁺, 140, 7 Bi_{3.6}Sr_{12.4}Mn_8O_{28+\delta} with tubular structure, 138, 278 CaFe_{1/2}Nb_{1/2}O_3, 138, 272 Cs₃(HSeO₄)₂(H₂PO₄), 141, 317 ``` ``` Cs₅(HSeO₄)₃(H₂PO₄)₂, 141, 317 \beta-Cs₃(HSO₄)₂[H_{2-x}(P_{1-x},S_x)O₄] (x ~ 0.5) superprotonic conductor, 139, 373 Cs₂PdSe₈, open framework structure with double helical assemblies of [Pd(Se_4)_2]^{2-}, letter to editor, 140, 149 Cs_4(SeO_4)(HSeO_4)_2(H_3PO_4), 141, 317 CuAl₂Si₂O₇(F,OH)₂, 141, 527 Cu₂^{II}Fe^{II}(CN)₆ and Cu₃^{II}[Fe^{III}(CN)₆]₂, relationship to mechanisms of Cs sorption, 141, 475 Cu₂SnS₃, refinement, 139, 144 Cu₄Sn₇S₁₆, 139, 144 1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, 136, 93 diglycine hydrogen selenite, 140, 71 DySr₂Cu_{2.7}Cr_{0.3}O_{7.2} and DySr₂Cu_{2.7}Mo_{0.3}O_{7.2}, 141, 522 Er₅O(OPrⁱ)₁₃, 141, 168 Er_{0.85}Te \ and \ Er_{17.3}Te_{24}I_8, \ \textbf{139,} \ 57 Er_2Ti_4O_2(OC_2H_5)_{18}(HOC_2H_5)_2, 135, 149 ethylenediamine-templated 1-D [enH₂][Zr(HPO₄)₃] [enH_2]_{0.5}[Zr(PO_4)(HPO_4)], 140, 46 ethylenediamine-templated zeolite-type structures in zinc arsenate and cobalt phosphate systems, 136, 210 Eu_{2-x}Sr_xNiO_{4+\delta}, 141, 99 Fe₆Ge₅, relationship to B8-type structures, 141, 199 ε-Fe₂O₃, 139, 93 Fe_{2.5}Ti_{0.5}O₄ nanocrystals synthesized by soft chemistry and high-energy ball milling, 139, 66 Ga_{3-x}In_{5+x}Sn_2O_{16}, 140, 242 GdAgGe, GdAuGe, GdAu_{0.44(1)}In_{1.56(1)}, and GdAuIn antiferromagnets, 141, 352 In₂S₃ thin films, study by diffraction of synchrotron radiation, 137, 6 In₄Sn₃O₁₂, 135, 140 A_4A'\operatorname{Ir}_2\operatorname{O}_9 (A = \operatorname{Sr}, \operatorname{Ba}; A' = \operatorname{Cu}, \operatorname{Zn}), commensurate and incommensur- ate phases, 136, 103 K₄Bi₂O₅, 139, 342 KLn^{III}M_2^{IV}F_{12} (M^{IV} = Tb,Zr,Hf; Ln^{III} = Ce-Lu), 139, 248 KH₂PO₄, 141, 486 K_4In_2(PSe_5)_2(P_2Se_6), one-dimensional compounds, 136, 79 K_{1-x}Li_xMnF_3 single crystal in range 100–298 K, 137, 71 KMgPO₄, 136, 175 KPb₄(VO₄)₃, anion-deficient apatite structure, 141, 373 KTb^{III}Tb_2^{IV}F_{12}, 139, 248 K₄Zr₆Br₁₈C, 139, 85 La_{0.2}Ca_{0.8}MnO₃, changes associated with charge ordering, 140, 331 La_{1-x}Ca_xMnO_3, 140, 320 La₂Co₂O₅, 141, 411 \text{La}_4\text{Co}_3\text{O}_{10+\delta} (0.00 \leq \delta \leq 0.30), 141, 212 LaCrS₃ prepared by high-pressure synthesis, 139, 233 La_xMo₆Se₈ Chevrel-phase superconductor, single-crystal studies, 136, La_{2-x}Nd_xCuO₄ system, transitions, 140, 345 \text{LaNi}_{1-x}M_x\text{O}_{2.5+\delta} (M = Mn,Fe,Co) vacancy-ordered phase, 135, 103 La₅Ti₆S₃Cl₃O₁₅, 139, 220 La₈Ti₁₀S₂₄O₄, 136, 46 Lewisite: mixed valency, cation site splitting, and symmetry reduction, 141, 562 LiCoO₂ low-temperature samples and acid-delithiated products, 140, 116 single crystals, refinement, letter to editor, 141, 298 Li_{1-x}H_xIO₃-type complex crystals, relationship to optical properties, 135, 121 ``` LiI₃Bi₂Sr₂CaCu₂O₈ layered cuprate, **141**, 452 Li-Mn-O spinels, **139**, 290 LiNi(AsO₄), 141, 508 ``` \text{Li}_9M_3(\text{P}_2\text{O}_7)_3(\text{PO}_4)_2 (M = Al,Ga,Cr,Fe), 138, 32 (\text{Li}_x V_{1-x})_3 BO_5 (x \simeq 0.3) disordered S = 1 system, 141, 418 \delta \text{Li}_x \text{V}_2 \text{O}_5, comparison to MgV₂O₅, 136, 56 Li_{0.84}W_{1.16}N₂ prepared by ammonolysis of LiF-WO₃, 138, 154 LiYO₂ doped with Eu³⁺, monoclinic and tetragonal, refinement, 137, LiZnPO₄, polymorph with cristobalite-type framework topology, 138, 126 Mg₅Nb₄O₁₅ and Mg₅Ta₄O₁₅, refinement by Rietveld analysis of neu- tron powder diffraction data, 137, 359 MgV_2O_5, comparison to \delta Li_xV_2O_5, 136, 56 Mn(ReO₄)₂·2H₂O, 138, 232 Mn₁₁Ta₄O₂₁, and refinement of Mn₄Ta₂O₉ structure, 137, 276 Mn_{0.15}V_{0.3}Mo_{0.7}O_3, 138, 347 AMoOPO₄Cl (A = K,Rb), 137, 214 NaFe_{3.67}(PO_4)_3, 139, 152 Na₂Ge₄O₉, 140, 175 NaLa₉(GeO₄)₆O₂ apatite, 139, 304 Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3 perovskite series, 138, 307 NaPb₄(VO₄)₃, anion-deficient apatite structure, 141, 373 Na₄P₂S₆·6H₂O, single-crystal study, 141, 274 Na₃ScF₆, single-crystal high-pressure studies, 135, 116 \text{[N$_2$C$_3$H$_5][AlP$_2O_8H_2$ \cdot 2H_2$O]} and 2[N$_2C_3H_5][Al$_3$P$_4$O$_{16}$H], letter to editor, 136, 141 [N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O connected through hy- drogen bonding, 139, 207 Nd₄Cu₂O₇, cooperatively distorted T' type structure, 136, 137 NdMo₆O₁₂, ordered hollandite-type compound, 136, 87 Nd₄Ni₃O₈, neutron diffraction and TEM studies, 140, 307 Nd_6Ni_{2-x}Si_3 and Nd_{42}Ni_{22-x}Si_{31}, 137, 302 [NH₃(CH₂)₈NH₃]₃[V₁₅O₃₆(Cl)](NH₃)₆(H₂O)₃, 136, 298 NH₄NbWO₆ defect pyrochlore, 141, 537 NH₄VP₂O₇, 136, 181 (Ni_{6-x}Cu_{x})MnO_{8}, 135, 322 Ni_{1-x}O with dissolved Zr^{4+}, defect clusters and superstructures, 140, 361 MO_2 (M = Ba,Sr,Ca,Mg,Be), ab initio quantum mechanical study, 140, 103 Pb_x(PO_2)_4(WO_3)_{2m} (6 \leq m \leq 10) bronze, 139, 362 Pb_2Re_2O_{7-x} pyrochlores, 138, 220 Pb^{II}Sn^{IV}(PO₄)₂, 137, 283 A_2MP_2Se_6 (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), 138, 321 Rb₂MoO₂As₂O₇, 141, 500 Rb₁₂Nb₆Se₃₅ polymer with infinite anionic chains built up by Nb₂Se₁₁ units containing Se₃⁴ fragment, 140, 97 Rb₃Sc₂(AsO₄)₃, determination by synchrotron single crystal methods, Rb₃Sn(PSe₅)(P₂Se₆), one-dimensional compounds, 136, 79 M(ReO_4)_2 (M = Mn,Co,Ni,Zn) anhydrous perrhenates, 138, 232 A_3MS_4 (A = Na,Rb; M = Nb,Ta), 139, 404 SbRe₂O₆ with Re-Re bond, 138, 245 ScAl₃C₃, 140, 396 ScNiP, 137, 218 Sm₃NbSe₃O₄, 137, 122 SmTe_{2-x} semiconductor, 140, 300 Sn(ND₃)₂F₄, 138, 350 SnO₂ nanocrystals, X-ray and Raman spectroscopy, 135, 78 [Sn_2(PO_4)_2]^{2-}[C_2N_2H_{10}]^{2+} \cdot H_2O, 140, 435 Sn_2(PO_4)[C_2O_4]_{0.5} containing one-dimensional tin phosphate chains, A_2Sn₄S₉ (A = K,Rb,Cs) layered compounds prepared by flux synthesis, 141, 17 Sr₃₉Co₁₂N₃₁, 141, 1 ``` $Sr_{1-x}La_xMo_5O_8 \ (0 \le x \le 1), 138, 7$ Sr₃Mn₂O₇, letter to editor, **141**, 599 Deuterium Sn(ND₃)₂F₄, structure, implications for synthesis of nitride fluorides, Sr₂NbN₃, **138**, 297 $Sr_{2-x}Pb_x(VO)(VO_4)_2$ solid solutions, **140**, 417 **138,** 350 Sr₃MRhO₆, with K₄CdCl₆ structure-type Devitrification M = Sm,Eu,Tb,Dy,Ho,Er,Yb, 139, 79AgI:Ag₂MoO₄ system, 140, 91 M = Y,Sc,In, 139, 416p-Dialkylbenzene-urea $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O$, 140, 134 inclusion compounds, order and disorder in, 141, 437 TaReSe₄ layered crystals, electron microscopic and X-ray diffraction Diaminoanthraquinone analysis, 135, 235 substitution pattern, effect on physical properties, 141, 309 Ta₃SBr₇, **140**, 226 1,3-Diaminopropane ALn_3Te_8 , site occupancy wave and infinite zigzag $(Te_2^2)_n$ chains in flat zirconium phosphate fluorides templated with, hydrothermal synthesis Te nets, 135, 111 and crystal structure, 135, 293 Ti₃O₅, **136**, 67 1,3-Diammonium-propane zinc hydrogen phosphates Ti(PO₄)(H₂PO₄), neutron powder data, **140**, 266 with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and TlB₅O₈, **136**, 216 physical properties, 136, 93 Tl₂(MoO₃)₃PO₃CH₃, **138**, 365 Dielectric properties $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4 \ (0.25 \le x \le 1.10)$ below room temperature, 139, 176 $TINbXO_6$ (X = W,Mo) ceramics, 141, 50 Tl₈Nb_{27.2}O₇₂, TEM and single-crystal X-ray diffraction studies, 135, $Pb_2MgW_xTe_{(1-x)}O_6$ solid solution, 139, 332 $TlNbXO_6$ (X = W,Mo) ceramics, 141, 50 $Tl_2Ru_2O_{7-\delta}$ pyrochlore synthesized at high pressure, 140, 182 Diethylenetriamine UAl₃C₃, **140**, 396 zirconium phosphate fluorides templated with, hydrothermal synthesis U₃Te₅, **139**, 356 and crystal structure, 135, 293 VO₂(A), 141, 594 Differential scanning calorimetry VO₂ polymorph prepared by soft chemical methods, 138, 178 Bi₂Te₄O₁₁ phase transitions, **135**, 175 Y₄Al₂O₉ at high temperature, **141**, 466 diglycine hydrogen selenite crystals, 140, 71 LiYO₂ doped with Eu³⁺, refinement of monoclinic and tetragonal struczirconium phosphate fluorides templated with amines, 135, 293 [Zn(4,4'-bipy)(H₂O)(SO₄)] · 0.5H₂O coordination polymer, interwoven tures, 137, 242 double-layer structure, 138, 361 monoglycine-selenious acid crystals, 140, 71 γ-Zn₂P₂O₇, determination from X-ray powder diffraction data, 140, order-disorder phase transition in bicyclononanone, 136, 16 62 $Pb_2MgW_xTe_{(1-x)}O_6$ solid solution, 139, 332 Differential thermal analysis ZnS, ordering of metal atoms in sphalerite and wurtzite structures, 138, EuI₂-KI binary system, 136, 134 334 Zr₃Al₃C₅, 140, 396 γ-Fe₂O₃ nanocrystalline particles, 137, 185 ZrTe₃, 138, 160 Diffraction anomalous fine structure $Ba_4(Ba_xPt_{1-x}^{2+})Pt_2^{4+}O_9$ twinned crystal, **140**, 201 Zr₃Te, 139, 213 Zr₅Te₄, 139, 213 Diffuse scattering La_{0.2}Ca_{0.8}MnO₃, structural and morphological changes associated with D charge ordering, 140, 331 DAFS, see Diffraction anomalous fine structure sinusoidal, loci in nonstoichiometric B8-type alloy phases $A_{1+x}B$ Decomposition (A = Co,Ni; B = Ge,Sn), simulation, 140, 402 α -Ca₃N₂, **137**, 33 Dispersion Mg₃N₂, 137, 33 NaNO₃ on ZrO₂: effect of supported Na⁺ on ZrO₂ texture properties, MO_2 (M = Ba,Sr,Ca,Mg,Be), ab initio quantum mechanical study, 140, Disproportionation spinel-type nickel chromium indium sulfides, 136, 193 in BaBiO₃, stabilization, contrast with stabilization of spontaneous thermal, see Thermal decomposition polarization of H₂ molecules, 138, 369 Defect chemistry spinel precipitates of Al-doped Ni_{1-x}, 140, 38 D3C-THF, cubic/tetragonal phase transition in, optical and X-ray pow-Defect structure der diffraction study, 137, 87 α -Fe₂O₃ doped with Mg²⁺, **140**, 428 Double helical assemblies Nd₄Ni₃O₈, neutron diffraction and TEM studies, **140**, 307 $[Pd(Se_4)_2]^{2-}$ in Cs_2PdSe_8 , letter to editor, **140**, 149 $Ni_{1-x}O$ with dissolved Zr^{4+} , defect clusters, **140**, 361 Dysprosium Pb_{1-x}In_xTe single crystals, point defect clusters revealed by X-ray dif-DyAlO₃ perovskite, stability, calorimetric study, 141, 424 fuse scattering method, 137, 119 Dy₃Al₅O₁₂ garnet, stability, calorimetric study, **141**, 424 DyBa₂Fe₃O_{8+w} triple perovskites, ⁵⁷Fe Mössbauer study, **139**, 168 Sr₄Nb₄O₁₄-Sr₅Nb₄O₁₅-SrTiO₃ system, microstructures in perovskite-DyBa₂Fe₃O_{8+x} phases, powder neutron and X-ray diffraction studies, related phases, 135, 260 TaReSe₄ layered crystals, electron microscopic and X-ray diffraction analysis, 135, 235 DyBi₂O₄NO₃, preparation and crystal structure, 139, 321 TlCl, TlBr, and TlI at high pressure and temperature, 141, 462 Dy₃Ga₅O₁₂ garnet, stability, calorimetric study, **141**, 424 Dy₃Si₂C₂, magnetic and electrical properties, 138, 201 Dehydration gypsum, Controlled transformation Rate Thermal Analysis, 139, 37 $DySr_2Cu_{2.7}Cr_{0.3}O_{7.2} \ \ and \ \ DySr_2Cu_{2.7}Mo_{0.3}O_{7.2}, \ \ crystal \ \ structures,$ $TlB_5O_6(OH)_4 \cdot 2H_2O$, **136**, 216 $KDy^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf$), synthesis and crystal structure, 139, 248 Delithiation LiCoO₂, products of, structural features, 140, 116 Sr₃DyRhO₆, synthesis, characterization, and magnetic properties, 139, 79 Ε PdTeI single crystals, 137, 206 Electrical conductivity ZrTe₃, 138, 160 $BaCo_{1-x}Cu_xS_{2-y}$ layered sulfide, 138, 111 Electronic properties Bi₂Te₃ single crystals with incorporated Ag, 140, 29 Cu₄Sn₇S₁₆, 139, 144 $A_2 \text{Ir}_2 \text{O}_{7-v}$ pyrochlores, **136**, 269 $Fe_8V_{10}W_{16}O_{85}$ low-spin d^5 system, 137, 223 $La_{1-x}Ba_xCoO_3$ ceramics, 137, 211 $A_2 Ru_2 O_{7-\nu}$ pyrochlores, **136**, 269 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$ system, **140**, 377 Electronic state $Na_{x-\delta}Fe_xTi_{2-x}O_4$ ($x = 0.875, 0 \le \delta \le 0.40$), 137, 168 Na₂SO₄, effect of aliovalent cation doping, 138, 183 NdMo₆O₁₂, ordered hollandite-type compound, **136**, 87 139, 124 Sb₂Te₃ single crystals with incorporated Ag, 140, 29 Ti₃O₅, 136, 67 $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$ materials, **141**, 576 Electronic structure superconductivity, see Superconductivity $[(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(RuO_2)_x (0 \le x \le 0.1)$ ceramics, 141, 282 La₁₂Mn₂Sb₃₀ alloy, **139**, 8 Rb₂CdCl₄, 140, 371 Electrical properties Bi₂S₃ thin films prepared by thermal evaporation and chemical bath deposition, 136, 167 mission electron microscopy $Bi_9(V_{1-x}P_x)_2ClO_{18}$ series $(0 \le x \le 1)$, 136, 34 (Ca_{1-x}Sr_x)MnO₃, relationship to Mn–O–Mn angles, 137, 82 Ce-Al-(Si,Ge) systems, 137, 191 Sr₄Ni₃O₉, 135, 1 In-Bi₂S₃ annealed thin films, **138**, 290 $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$, effect of Ge^{4+} , 140, 431 ate phases, 136, 103 $La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3$ perovskites, 138, 226 LaCrS₃ prepared by high-pressure synthesis, 139, 233 $La_{1-x-y}A_xMnO_{3-\delta}$ (A = Na,K), 137, 19 rotation twins, 135, 235 Electron paramagnetic resonance Li_xNi_{0.8}Co_{0.2}O₂ system, **136**, 8 $R_3Si_2C_2$ (R = Y,La-Nd,Sm,Gd-Tm), 138, 201 Cu²⁺ in sol-gel-derived TiO₂, 138, 1 $Sr_{1-x}La_xMo_5O_8$ (0 $\leq x \leq$ 1), **138**, 7 CuAl₂Si₂O₇(F,OH)₂, 141, 527 Electrical resistivity $Fe_8V_{10}W_{16}O_{85}$ low-spin d^5 system, 137, 223 Ag_{0.7}Mo₃O₇(PO₄) bronze built up from ReO₃-type slabs, 140, 128 $Fe_2Mo_{1-x}Ti_xO_4$ spinel oxides, **140**, 56 La_xMo₆Se₈ Chevrel-phase superconductor, 136, 160 NaGdTiO₄ layered perovskite, 138, 342 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$ (0.5 $\leq x \leq$ 0.9) perovskite, **139**, 388 $Pb_x(PO_2)_4(WO_3)_{2m}$ (6 $\leq m \leq$ 10) bronze, 139, 362 Electron-phonon coupling SbRe₂O₆ with Re-Re bond, 138, 245 SrNb₂S₅ and SrTa₂S₅, 135, 325 **136,** 206 $TINbXO_6$ (X = W,Mo) ceramics, 141, 50 Energy of mixing Electrochemistry Li-inserted In₁₆Fe₈S₃₂, **138**, 193 tree-Fock study, 137, 261 Li_xNi_{0.8}Co_{0.2}O₂ system, **136**, 8 EPR, see Electron paramagnetic resonance preparation of PZT thin films on stainless steel, 136, 293 Erbium Electromotive force measurements nanocrystalline copper-doped cerium oxide, 140, 295 Electron diffraction $Ba_4(Ba_xPt_{1-x}^{2+})Pt_2^{4+}O_9$ twinned crystal, **140**, 201 $(1-x)Bi_2O_3 \cdot xCaO$, short-range order in γ -type solid solution, 135, 136, 21 (Co,Ni,Cu)_{1+x}(Ge,Sn) B8-type phases, computer simulation of diffuse scattering, 135, 269 convergent beam, $Ga_{3-x}In_{5+x}Sn_2O_{16}$, 140, 242 Fe₆Ge₅, crystal structure relationship to B8-type structures, 141, 199 Ga-In-Sn-O ceramic, determination of oxygen atomic position, letter to editor, 136, 145 Mo₂O₅(OCH₃)₂ and Mo₂O₅(OCH₃)₂·2CH₃OH, 136, 247 $Ni_{1+m}Sn_{1-x}P_x$ B8-type solid solutions, Sn/P and interstitial Ni ordering, Er₂Ti₄O₂(OC₂H₅)₁₈(HOC₂H₅)₂, synthesis, characterization, and structure, 135, 149 $KEr^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf$), synthesis and crystal structure, 139, selected-area, Bi₂Te₄O₁₁ phase transitions, **135**, 175 ZrV₂O₇, in situ analysis of temperature-dependent phase transitions, 137, 161 Sr₃ErRhO₆, synthesis, characterization, and magnetic properties, **139**, 79 Electronic absorption spectra ESR, see Electron paramagnetic resonance Cr(SeO₂OH)(Se₂O₅), 135, 70 zinc arsenate and cobalt phosphate systems templated with, synthesis Electronic band structure MNX (M = Zr,Ti; X = Cl,Br,I) system, **138**, 207 and zeolite-type structures, 136, 210 Eu₃Ba₂Mn₂Cu₂O₁₂, effects of cationic substitution, 141, 546 $LaNi_{0.95}M_{0.05}O_3$ (M = Mo,W,Sb,Ti,Cu,Zn) perovskites, 136, 313 $(\text{Li}_x V_{1-x})_3 BO_5 \ (x \simeq 0.3) \ \text{disordered} \ S = 1 \ \text{system}, \ 141, \ 418$ TiO₂ ultrafine particles, characterization by luminescence spectroscopy, Bi³⁺ lone pair configuration in modulated Bi-2212 type oxides, 139, 194 Electron microscopy, see also High-resolution electron microscopy; Trans- $Ca_{1-x}Sr_xNbO_3$ (0 $\leq x \leq 1$) perovskite-type phases, **141**, 514 hexagonal perovskites with one-dimensional structures related to $A_4A'\operatorname{Ir}_2\operatorname{O}_9$ (A = Sr,Ba; $A' = \operatorname{Cu}_2\operatorname{Zn}$), commensurate and incommensur- $Pb_x(PO_2)_4(WO_3)_{2m}$ (6 $\leq m \leq$ 10) bronze, 139, 362 TaReSe₄ layered crystals, structure, defect structure, microstructure, and Mn²⁺-doped AlF₃, and ab initio quantum chemical calculations, 139, 27 MoV in tetragonal and monoclinic phases of zirconia, 136, 263 Pr⁴⁺ doped in BaSnO₃, Ba₂SnO₄, and Ba₃Sn₂O₇, **138**, 329 Gd³⁺ and Eu³⁺ in crystalline materials and glasses of same composition, MnO-NiO, MgO-MnO, and CaO-MnO solid solutions, ab initio Har-Er₃Al₅O₁₂ garnet, stability, calorimetric study, **141**, 424 ErBa₂Cu₃O_{6.5}, half filling of O intercalation in, new orthorhombicity type and cell volume expansions near, 135, 307 ErBa₂Fe₃O_{8+w} triple perovskites, ⁵⁷Fe Mössbauer study, **139**, 168 ErBa₂Fe₃O_{8+x} phases, powder neutron and X-ray diffraction studies, ErBi₂O₄NO₃, preparation and crystal structure, 139, 321 Er(ClO₄)₃, crystalline and molecular structures, 139, 259 Er₃Ga₅O₁₂ garnet, stability, calorimetric study, **141**, 424 Er₅O(OPrⁱ)₁₃, synthesis and properties, **141**, 168 Er₃Si₂C₂, magnetic and electrical properties, 138, 201 Er-Te binary and Er-Te-I ternary systems, nonstoichiometry in, 139, zirconium phosphate fluorides templated with, hydrothermal synthesis and crystal structure, **135**, 293 zirconium phosphates of variable dimensions templated by, crystal structures, 140, 46 Europium CaS:Eu,La, Eu valencies in, **138**, 149 Eu³⁺ $LiYO_2$ doped with, monoclinic and tetragonal structures, refinement, 137, 242 vibronic transitions in crystalline materials and glasses of same composition, **136**, 206 EuAlO₃ perovskite, stability, calorimetric study, 141, 424 EuBa₂Cu₃O_y, shock synthesis, effect of ionic radius difference of Eu³⁺ and Ba²⁺, **136**, 74 Eu₂Ba₂Cu₂Ti₂O₁₁₋₈, sol-gel synthesis and simultaneous oxidation, **138**, 141 Eu₃Ba₂Mn₂Cu₂O₁₂, electronic and magnetic properties, effects of cationic substitution, **141**, 546 EuBi₂O₄NO₃, preparation and crystal structure, 139, 321 Eu₃(BO₃)₂F₃, ab initio structure determination, 139, 52 Eu(ClO₄)₃, crystalline and molecular structures, 139, 259 Eu₃Ga₅O₁₂ garnet, stability, calorimetric study, 141, 424 EuI₂-KI binary system, phase diagram, 136, 134 EuTIn (T = Zn,Pd,Pt,Au) intermetallic compounds, ¹⁵¹Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174 $Eu_{2-x}Sr_xNiO_{4+\delta}$, preparation, crystal structure, and reducibility, **141**, 99 NaEuTiO₄ layered perovskites, magnetic properties, 138, 342 Sr₂EuMn₂O₇, Ruddlesden–Popper phases, HRTEM study, **138**, 135 Sr₃EuRhO₆, synthesis, characterization, and magnetic properties, **139**, 79 Eutectic mixtures UCl₄ with KCl, selective deposition of UCl₄ and (KCl)_x(UCl₄)_y inside carbon nanotubes using, **140**, 83 Evaporation thermal, Bi₂S₃ thin films prepared by, properties, 136, 167 EXAFS, see Extended X-ray absorption fine structure Extended X-ray absorption fine structure Sn⁴⁺-doped indium oxide and In₄Sn₃O₁₂, 135, 140 F Fluorine AIF₃, temperature- and gas-phase-mediated reorganization and paramagnetic doping, 139, 27 Ba₂MoO₃F₄, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd REDOR NMR study, **140**, 285 BaScO₂F perovskite, synthesis and structure, **139**, 422 $Ba_2WO_3F_4,$ oxygen/fluorine ordering in, ^{19}F MAS and $^{19}F^{-113}Cd$ REDOR NMR study, $140,\ 285$ M_2 BN₂F (M =Ca,Sr), compounds with isolated BN₂³⁻ units, 135, $Ln_3(BO_3)_2F_3$ (Ln = Sm,Eu,Gd), *ab initio* structure determination, 139, CaF₂, structure candidates, determination, 136, 233 CdWO₃F₂, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd REDOR NMR study, **140**, 285 CuAl₂Si₂O₇(F,OH)₂, hydrothermal synthesis, crystal structure, and properties, **141**, 527 $KLn^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf; Ln^{III} = Ce-Lu$), synthesis and crystal structure, **139**, 248 K_{1-x}Li_xMnF₃ single crystal, phase transition and structure in range 100–298 K, **137**, 71 $(K_xNa_{1-x})MgF_3$ perovskites, crystal chemistry and phase transitions in P-T-X space, **141**, 121 K_2NbO_3F , oxygen/fluorine ordering in, ^{19}F MAS and $^{19}F^{-113}Cd$ REDOR NMR study, **140**, 285 K_2NiF_4 , structure, $La_2Li_{1/2}M_{1/2}O_4$ (M(III) = Co,Ni,Cu) with variant of, 138, 18 KTb^{III}Tb₂^{IV}F₁₂, synthesis and crystal structure, **139**, 248 LiF-WO₃, ammonolysis, *in situ* X-ray diffraction study: detection and crystal structure of Li_{0.84}W_{1.16}N₂, **138**, 154 MgF₂, structure candidates, determination, 136, 233 NaMoO₃F, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd RE-DOR NMR study, **140**, 285 Na₃ScF₆, single-crystal high-pressure studies, 135, 116 Sn(ND₃)₂F₄, structure, implications for synthesis of nitride fluorides, 138, 350 $Sr_{2-x}A_xCuO_2F_{2+\delta}$ (A=Ca,Ba) superconductors, synthetic pathways and associated structural rearrangements, 135, 17 zirconium phosphate fluorides templated with amines, hydrothermal synthesis and crystal structure, 135, 293 Fluorohectorite heterostructures intercalation process in formation of, analysis, 139, 281 Flux synthesis LiCoO₂ single crystals, letter to editor, 141, 298 A_2 Sn₄S₉ (A = K,Rb,Cs) layered compounds, **141**, 17 Formaldehyde formation by methanol oxidation over Mo catalysts, $Mo_2O_5(OCH_3)_2$ and $Mo_2O_5(OCH_3)_2 \cdot 2CH_3OH$ compounds modeling, structure, 136, 247 Fuel cells cathode, lanthanun strontium manganate(III)(IV) materials for, oxidation kinetics, *in situ* powder diffraction studies, **141**, 235 G Gadolinium (Ca,Gd)₂(Al,Ti)O₄, crystal structure, **139**, 204 CaTiO₃ doped with, charge compensation in, **124**, 77; comment, **137**, 355; reply, **137**, 357 Gd³⁺, vibronic transitions in crystalline materials and glasses of same composition, 136, 206 GdAgGe, GdAuGe, GdAu_{0.44(1)}In_{1.56(1)}, and GdAuIn antiferromagnets, structure, bonding, magnetic susceptibility, and ¹⁵⁵Gd Mössbauer spectroscopy, **141**, 352 GdAlO₃ perovskite, stability, calorimetric study, 141, 424 $GdBa_2Fe_3O_{8+x}$ phases, powder neutron and X-ray diffraction studies, 136, 21 GdBi₂O₄NO₃, preparation and crystal structure, 139, 321 Gd₃(BO₃)₂F₃, ab initio structure determination, 139, 52 Gd_{0.5}Ca_{0.5}MnO₃, charge-ordered states, distinction based on chemical melting, 137, 365 Gd₃Ga₅O₁₂ garnet, stability, calorimetric study, 141, 424 Gd₃Si₂C₂, magnetic and electrical properties, 138, 201 $KGd^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf$), synthesis and crystal structure, 139, 248 NaGdTiO₄ layered perovskites, magnetic properties, **138**, 342 Ba₂BiGa₁₁O₂₀, preparation and crystal structure, **138**, 313 $BaGa_{12}O_{19}$, magnetoplumbite-type compound, preparation and crystal structure, 136, 120 Ga-In-Sn-O ceramic, oxygen atomic positions in, determination with direct methods and electron diffraction, letter to editor, 136, 145 $Ga_{3-x}In_{5+x}Sn_2O_{16}$, structure, **140**, 242 $LnGaO_3$ (Ln = La-Lu, Y) perovskites, stability, calorimetric study, **141**, $Ln_3Ga_5O_{12}$ (Ln = La-Lu, Y) garnets, stability, calorimetric study, **141**, 424 $InGaO_3(ZnO)_m$ (m = integer), modulated structure described by four-dimensional superspace group, 139, 347 LaGaO₃, Sr- and Mg-doped perovskite-type oxide-ion conductor, wet chemical synthesis, 136, 274 $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85}$, high-temperature powder neutron diffraction, 139, 135 Li₉Ga₃(P₂O₇)₃(PO₄)₂, crystal structure and cation transport properties, 138, 32 [NH₃(CH₂)₄NH₃][Ga(PO₄)(PO₃OH)], synthesis and characterization, 136, 227 ### Garnet Na₃Fe₂(AsO₄)₃, cationic substitutions, associated transition to alluaudite structure, **137**, 112 $Ln_3M_5O_{12}$ (Ln = La-Lu, Y; M = Al,Ga), stability, calorimetric study, **141**, 424 #### Germanium Ce-Al-(Si,Ge) systems, phase equilibria and physical properties, 137, 191 Co_{1+x}Ge, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, 140, 402 (Co,Ni,Cu)_{1 + x}(Ge,Sn) *B8*-type phases, modulated structures and diffuse scattering, computer simulation, **135**, 269 Fe₆Ge₅, crystal structure, relationship to *B*8-type structures, **141**, 199 GdAgGe and GdAuGe antiferromagnets, structure, bonding, magnetic susceptibility, and ¹⁵⁵Gd Mössbauer spectroscopy, **141**, 352 M_2 Ge intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218 GeSe₂, pressure-induced amorphization, **141**, 248 $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$, electrical properties, effect of Ge^{4+} , **140**, 431 $Na_2Ge_4O_9$, structure, **140**, 175 NaLa₉(GeO₄)₆O₂ apatite, single-crystal growth and structure determination, **139**, 304 $Ni_{1+x}Ge$, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402 ## Glass $AgI:Ag_2MoO_4$ system, phase diagram: devitrification and metastability, 140, 91 and crystalline materials of same composition, vibronic transitions of Gd³⁺ and Eu³⁺ in, **136**, 206 ## Glycine diglycine hydrogen selenite and monoglycine-selenious acid crystals, vibrational spectra and DSC measurement and structure of DGSe(IV), 140, 71 ## Goethite aciculate ultrafine particles, rheology under alkaline conditions, 141, 94 fold AuTa₅S, synthesis and structure, **139**, 45 EuAuIn intermetallic compounds, ¹⁵¹Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174 GdAuGe, GdAu_{0.44(1)}In_{1.56(1)}, and GdAuIn antiferromagnets, structure, bonding, magnetic susceptibility, and ¹⁵⁵Gd Mössbauer spectroscopy, **141**, 352 ## Gypsum dehydration, Controlled transformation Rate Thermal Analysis, 139, 37 ## Н ## Hafnium BaHfN₂, synthesis, structure, and magnetic properties, 137, 62 BaHf_{1-x}Zr_xN₂ solid solution, synthesis, structure, and magnetic properties. 137, 62 $KLn^{III}Hf_2^{IV}F_{12}$ (Ln^{III} = Ce–Lu), synthesis and crystal structure, **139**, 248 $Zr_{2.7}Hf_{11.3}P_9$, bonding and site preferences, **136**, 221 ## Hall coefficient Sb₂Te₃ and Bi₂Te₃ single crystals with incorporated Ag, 140, 29 Hartree-Fock study energies of mixing of MnO-NiO, MgO-MnO, and CaO-MnO solid solutions, *ab initio* calculations, **137**, 261 #### Hewettite $BaV_6O_{16} \cdot nH_2O$, hydrothermal synthesis and crystal structure, **140**, 219 High-resolution electron microscopy $Ba_5Ta_4O_{15}$ – $MZrO_3$ (M = Ba,Sr) system, hexagonal perovskites in, **141**, 492 digital, imaging of Y atoms in YB₅₆ with YB₆₆ structure, **135**, 182 $Ga_{3-x}In_{5+x}Sn_2O_{16}$, 140, 242 host-layer restacking in Hg_xTiS₂, **141**, 330 $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$ phase transitions to $V_{0.27}W_{0.73}O_{2.865},\\$ 136, 284 Ruddlesden–Popper compositions $Sr_2LnMn_2O_7$ (Ln = Y,La,Nd,Eu,Ho), 138, 135 ## Hollandite-type compounds ordered, NdMo₆O₁₂, synthesis, crystal structure, and characterization, 136. 87 ### Holmium Ho₃Al₅O₁₂ garnet, stability, calorimetric study, **141**, 424 Ho(ClO₄)₃, crystalline and molecular structures, **139**, 259 Ho₃Ga₅O₁₂ garnet, stability, calorimetric study, **141**, 424 Ho₃Si₂C₂, magnetic and electrical properties, 138, 201 $KHo^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf$), synthesis and crystal structure, 139, 248 Sr₂HoMn₂O₇, Ruddlesden–Popper phases, HRTEM study, 138, 135 Sr_3HoRhO_6 , synthesis, characterization, and magnetic properties, 139, 79 ## Host-layer restacking in Hg_xTiS₂, mechanism, **141**, 330 HREM, see High-resolution electron microscopy Hückel calculations MNX (M = Zr,Ti; X = Cl,Br,I) system, 138, 207 Sn(ND₃)₂F₄, 138, 350 Hydrochloric acid nondoped sol-gel ZrO₂ prepared with, tetragonal nanophase stabilization. 135, 28 ## Hydrogen anhydrous bisoctyltrimethylammonium dichromate, crystal structure, 139, 310 Ba₃AlO₄H, synthesis and structure, 141, 570 Ba₂(VO₂)(PO₄)(HPO₄)·H₂O, with trigonal bipyramidal VO₅ groups, hydrothermal synthesis and crystal structure, **140**, 272 $\label{eq:cahpode} CaHPO_4\cdot 2H_2O \ phosphates, composites with polymer, percolation and modeling of proton conduction in, \ 141,\ 392$ [(CH₃)₂N(CH₂CH₂)₂O]Ag₄I₅, silver ion distribution and flow in, cooperative disorder model, **140**, 1 $(C_4H_{12}N_2)_2[Fe_6(HPO_4)_2(PO_4)_6(H_2O)_2] \cdot H_2O$ templated by piperazine, synthesis and characterization, **139**, 326 $[(CH_3NH_3)_{1.03}K_{2.97}]Sb_{12}S_{20}\cdot 1.34H_2O$, hydrothermal synthesis and crystal structure, **140**, 387 $C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O$, crystal structure and thermal behavior, **141**, 343 $C_6H_{18}N_3^{2+} \cdot 2HPO_4^- \cdot 4H_2O$, crystal structure and thermal behavior, 141, 343 Cs₃(HSeO₄)₂(H₂PO₄), synthesis and crystal structure, **141**, 317 Cs₅(HSeO₄)₃(H₂PO₄)₂, synthesis and crystal structure, **141**, 317 Cs₅(HSO₄)₃(H₂PO₄)₂, solid acid with unique hydrogen bond network, X-ray diffraction study, **140**, 251 β -Cs₃(HSO₄)₂[H_{2-x}(P_{1-x},S_x)O₄] ($x \sim 0.5$) superprotonic conductor, structure and vibrational spectrum, **139**, 373 CsMnHP₃O₁₀, magnetic structure and properties, 141, 160 Cs₄(SeO₄)(HSeO₄)₂(H₃PO₄), synthesis and crystal structure, 141, 317 1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and physical properties, 136, 93 diglycine hydrogen selenite, crystal structure, vibrational spectra, and DSC measurement, **140**, 71 ${\rm Er_2Ti_4O_2(OC_2H_5)_{18}(HOC_2H_5)_2},$ synthesis, characterization, and structure, **135**, 149 ethylenediamine-templated 1-D $[enH_2][Zr(HPO_4)_3]$ and 2-D $[enH_2]_{0.5}[Zr(PO_4)(HPO_4)]$, crystal structures, **140**, 46 ethylenediamine-templated zinc arsenate and aluminum cobalt phosphate, synthesis and zeolite-type structures, **136**, 210 H₂, spontaneous polarization, stabilization of, contrast with stabilization of diproportionation in BaBiO₃, letter to editor, **138**, 369 H_xMoO₃ bronze, protonic locations in, 141, 255 H₂O-Na₂SO₄-Na₂HPO₄ system, isotherms, conductivity measurements, **140**, 316 $(H_2O)[V_2O_2(OH)\{O_3P(CH_2)_2PO_3\}]$, hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89 $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$, phase transitions to $V_{0.27}W_{0.73}O_{2.865}$, X-ray, thermal, and HREM studies, 136, 284 KBH₄, reduction of KMnO₄ in aqueous solutions: synthesis of manganese oxides. 137, 28 KH₂PO₄, high-temperature form, preparation and crystal structure, $\text{Li}_{1-x}\text{H}_x\text{IO}_3$ -type complex crystals, structure–property relationships, 135, 121 monoglycine-selenious acid crystals, vibrational spectra and DSC measurement, 140, 71 $Mo_2O_5(OCH_3)_2$ and $Mo_2O_5(OCH_3)_2 \cdot 2CH_3OH$, structural analysis, 136, 247 $[N_2C_3H_5][AlP_2O_8H_2\cdot 2H_2O]$ and $2[N_2C_3H_5][Al_3P_4O_{16}H]$, synthesis and structure, letter to editor, **136**, 141 [N(C₂H₅NH₃)₃]^{3+I}Sn(PO₄)(HPO₄)]³⁻⁴H₂O, connected through hydrogen bonding, synthesis and structure, **139**, 207 [NH₃(CH₂)₄NH₃][Ga(PO₄)(PO₃OH)], synthesis and characterization, 136, 227 $[NH_3(CH_2)_8NH_3]_3[V_{15}O_{36}(Cl)](NH_3)_6(H_2O)_3$, synthesis and structure, **136**, 298 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$ nH_2O thin film, hydrothermal synthesis, **141**, 229 $[Sn_2(PO_4)_2]^2$ $[C_2N_2H_{10}]^2$ · H_2O , synthesis and crystal structure, **140**, 435 Ti(PO₄)(H₂PO₄), crystal structure from neutron powder data, **140**, 266 Tl₂(MoO₃)₃PO₃CH₃, synthesis, structure, and properties, **138**, 365 zirconium phosphate fluorides templated with amines, hydrothermal synthesis and crystal structure, 135, 293 $Zn(O_3PC_6H_5) \cdot H_2O$, thermal behavior, **140**, 62 Hydrogen bonding $Cs_5(HSO_4)_3(H_2PO_4)_2$ solid acid, **140**, 251 in diaminoanthraquinone, properties related to, 141, 309 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$, **139**, 207 Hydrotalcite derived MgAlO oxides calcined at varying temperatures, structural and surface acid/base properties, 137, 295 Hydrothermal synthesis $BaV_6O_{16} \cdot nH_2O$, **140**, 219 $Ba_2(VO_2)(PO_4)(HPO_4) \cdot H_2O$ with trigonal bipyramidal VO_5 groups, $RBi_2O_4NO_3$ (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **139**, 321 $[(CH_3NH_3)_{1.03}K_{2.97}]Sb_{12}S_{20} \cdot 1.34H_2O$, **140**, 387 α-CoV₃O₈, **141**, 133 CuAl₂Si₂O₇(F,OH)₂, 141, 527 ethylenediamine-templated zeolite-type structures in zinc arsenate and cobalt phosphate systems, **136**, 210 γ-Fe₂O₃ nanocrystalline particles, **137**, 185 KH₂PO₄, **141**, 486 LiFeO₂ prepared by, magnetic properties, 141, 554 effect of cation arrangement, 140, 159 LiZnPO₄ polymorph with cristobalite-type framework topology, 138, 126 MIL-5 composite microporous compounds, 141, 89 $Na_5[B_2P_3O_{13}]$, letter to editor, 140, 154 NaFe_{3.67}(PO₄)₃, **139**, 152 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$ nH₂O thin film, **141**, 229 $Sn_2(PO_4)[C_2O_4]_{0.5}$ containing one-dimensional tin phosphate chains, 139, 200 $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O$, 140, 134 Tl₂(MoO₃)₃PO₃CH₃, **138**, 365 VO₂, 138, 178 zirconium phosphate fluorides templated with amines, 135, 293 Hydroxide $Al_{13}O_4(OH)_{24}(H_2O)_{12}^{7+}$, encapsulation into MoS_2 and WS_2 and Rietveld structural characterization, **139**, 22 Cr(SeO₂OH)(Se₂O₅), modifications of, crystal structures and electronic absorption spectra, **135**, 70 CuAl₂Si₂O₇(F,OH)₂, hydrothermal synthesis, crystal structure, and properties, **141**, 527 $\rm Er_2Ti_4O_2(OC_2H_5)_{18}(HOC_2H_5)_2,$ synthesis, characterization, and structure, 135, 149 α-FeOOH aciculate ultrafine particles, rheology under alkaline conditions, 141, 94 (H₂O)[V₂O₂(OH){O₃P(CH₂)₂PO₃}], hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89 Mo₂O₅(OCH₃)₂·2CH₃OH, structural analysis, **136**, 247 $[NH_3(CH_2)_4NH_3][Ga(PO_4)(PO_3OH)]$, synthesis and characterization, 136, 227 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$ nH_2O thin film, hydrothermal synthesis, **141**, 229 $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O$, synthesis and crystal structure, **140**, 134 $TlB_5O_6(OH)_4 \cdot 2H_2O$, dehydration, 136, 216 Hydroxyapatite Ca-Pb hydroxyapatites, thermal and structural properties and oxidation of methane, 135, 86 1 Imidazolium $[N_2C_3H_5][AlP_2O_8H_2\cdot 2H_2O]$ and $2[N_2C_3H_5][Al_3P_4O_{16}H]$, synthesis and structure, letter to editor, **136**, 141 Indium CuInP₂S₆, soft-chemistry forms, **141**, 290 EuTIn (T = Zn,Pd,Pt,Au) intermetallic compounds, ¹⁵¹Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174 Ga-In-Sn-O ceramic, oxygen atomic positions in, determination with direct methods and electron diffraction, letter to editor, 136, 145 $Ga_{3-x}In_{5+x}Sn_2O_{16}$, structure, **140**, 242 GdAu_{0.44(1)}In_{1.56(1)} and GdAuIn antiferromagnets, structure, bonding, magnetic susceptibility, and ¹⁵⁵Gd Mössbauer spectroscopy, **141**, 352 $In-Bi_2S_3$, annealed thin films, structural and electrical properties, 138, 290 $In_{16}Fe_8S_{32}$, lithium-inserted, structure and electrochemical behavior, 138. 193 $InMO_3(ZnO)_m(M = In,Ga; m = integer)$, modulated structure described by four-dimensional superspace group, **139**, 347 In_2S_3 thin films, study by diffraction of synchrotron radiation, 137, 6 $In_4Sn_3O_{12}$, structural studies, 135, 140 K₄In₂(PSe₅)₂(P₂Se₆), one-dimensional compounds, synthesis, structure, and optical and thermal properties, 136, 79 $La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3$ perovskites, structural, magnetic, and electrical properties, 138, 226 LiIn, pressure-induced phase transformation from NaTl-type phases to β -brass-type alloys, **137**, 104 $Ni_y(Cr_{2-2x}In_{2x})_{1-y}S_{3-y}$ spinel, decomposition and X-ray powder diffraction, 136, 193 Pb_{1-x}In_xTe single crystals, point defect clusters revealed by X-ray diffuse scattering method, **137**, 119 Sn⁴⁺-doped indium oxide, structural studies, **135**, 140 Sr₃InRhO₆ with K₄CdCl₆ structure, synthesis and characterization, 139, Infrared spectroscopy $Bi_9(V_{1-x}P_x)_2ClO_{18}$ series $(0 \le x \le 1)$, **136**, 34 α -Ca₃N₂, **137**, 33 (1:1) $Cd_3^{II}[(Tr^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O$ complexes (Tr = Co, Fe), 140, 140 β -Cs₃(HSO₄)₂[H_{2-x}(P_{1-x},S_x)O₄] (x ~ 0.5) superprotonic conductor, 139, 373 diglycine hydrogen selenite and monoglycine-selenious acid crystals, 140, 71 γ-Fe₂O₃ nanocrystalline particles, **137**, 185 $La_{1-x}Ba_xCoO_3$ ceramics, 137, 211 Mg₃N₂, **137**, 33 NbO(O₂)_{0.5}PO₄·2H₂O, 137, 289 $MNi(AsO_4)$ (M = Li,Na), 141, 508 order-disorder phase transition in bicyclononanone, 136, 16 $Sn(ND_3)_2F_4$, 138, 350 $Sr_{2-x}Pb_x(VO)(VO_4)_2$ solid solutions, **140**, 417 Tl₂(MoO₃)₃PO₃CH₃, 138, 365 Interatomic distance $La_xMo_6Se_8$ Chevrel-phase superconductor, correlation with T_c , 136, 151 Intermetallics M_2X , nonmetal insertion in h.c.-like metallic distribution, 135, 218 Iodine $AgI:Ag_2MoO_4$ system, phase diagram: devitrification and metastability, 140. 91 [(CH $_3$) $_2$ N(CH $_2$ CH $_2$) $_2$ O]Ag $_4$ I $_5$, silver ion distribution and flow in, cooperative disorder model, 140, 1 Er-Te-I ternary systems, nonstoichiometry in, 139, 57 EuI₂-KI binary system, phase diagram, 136, 134 ${\rm IBi_2Sr_2CaCu_2O_y},$ superconducting intercalates, charge transfer- T_c relationship, 138, 66 Li_{1-x}H_xIO₃-type complex crystals, structure-property relationships, 135, 121 LiI₃Bi₂Sr₂CaCu₂O₈ layered cuprate, synthesis and characterization, 141, 452 MNI (M = Zr,Ti) system, electronic band structure, 138, 207 PdTeI, single-crystal X-ray diffraction and electronic band structure studies, 137, 206 TII, defects and ionic conductivity at high pressure and temperature, **141**, 462 Ion exchange $A_xK_{1-x}Bi_3S_5$ ($A = Li,Na,NH_4$) preparation by solid-state route, letter to editor, **136**, 328 Ionic conductivity $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$ system, **140**, 377 TICl, TIBr, and TII at high pressure and temperature, **141**, 462 Ionic conductors BICOVOX.15, structure, single-crystal neutron diffraction study at room temperature, **141**, 241 one-dimensional, [(CH₃)₂N(CH₂CH₂)₂O]Ag₄I₅, silver ion distribution and flow in, cooperative disorder model, **140**, 1 Ionic radius $\mathrm{Ba^{2+}}$ and RE^{3+} in $RE\mathrm{Ba_2Cu_3O_y}$ ($RE=\mathrm{Y,Eu,La}$), difference between, effects in shock synthesis, 136, 74 Iridium $\text{Ca}_3\text{Co}_{1+x}\text{Ir}_{1-x}\text{O}_6$, one-dimensional oxides, synthesis and magnetic properties, **140**, 14 $A_2 \text{Ir}_2 \text{O}_{7-y}$ pyrochlores, structural and electronic properties, **136**, 269 $A_4 A' \text{Ir}_2 \text{O}_9$ (A = Sr, Ba; A' = Cu, Zn), commensurate and incommensurate phases, **136**, 103 Iron $Ba_6Cu_{12}Fe_{13}S_{27}$, synthesis and crystal structure, **128**, 62; comment, **137**, 353; reply, **137**, 354 BaFe₁₂O₁₉ hexagonal ferrite, Raman spectra and vibrational analysis, 137, 127 RBa₂Fe₃O_{8+x} phases (R = La,Nd,Sm,Gd,Dy,Er,Yb,Lu,Y), powder neutron and X-ray diffraction studies, **136**, 21 $REBa_2Fe_3O_{8+w}$ triple perovskites (RE = Dy,Er,Y), ⁵⁷Fe Mössbauer study, **139**, 168 6H-Ba(Ti,Fe³⁺,Fe⁴⁺) $O_{3-\delta}$ solid solution, structural analysis, **135**, 312 CaFe_{1/2}Nb_{1/2} O_3 , crystal chemistry, **138**, 272 CaTi_{1-2x}Fe_xNb_xO₃ perovskite series, structural study, **138**, 272 (1:1) $Cd_3^{II}[(Fe^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O$ complexes, structural and spectral studies, **140**, 140 $(C_4H_{12}N_2)_2[Fe_6(HPO_4)_2(PO_4)_6(H_2O)_2] \cdot H_2O$ templated by piperazine, synthesis and characterization, **139**, 326 Co_xCu_{1-x}Fe₂O₄ spinel powders, cation migration and coercivity in, 141, 56 $Cu_2^{II}Fe^{II}(CN)_6$ and $Cu_3^{II}[Fe^{II}(CN)_6]_2$, mechanisms of Cs sorption on, relationship to crystal structure, **141**, 475 Fe³⁺, substitution for Mn³⁺ in $Ln_{0.5}A_{0.5}MnO_3$ (Ln = Nd,Gd,Y; A = Ca,Sr), **137**, 365 FeAl₂O₄, formation from α - and γ -Al₂O₃-supported oxides, 135, 59 Fe₆Ge₅, crystal structure, relationship to B8-type structures, 141, 199 Fe₂Mo_{1-x}Ti_xO₄ spinel oxides, electrical resistivity and thermoelectric power measurements, **140**, 56 α-Fe₂O₃ doped with Mg²⁺, structural characterization, **140**, 428 $\gamma\text{-Fe}_2O_3$ nanocrystalline particles, hydrothermal synthesis and characterization, 137, 185 ε-Fe₂O₃, structural and magnetic characterization, 139, 93 α -FeOOH aciculate ultrafine particles, rheology under alkaline conditions, 141, 94 Fe-S materials, mechanochemical synthesis, 138, 114 Fe_{0.33}[Ta₂S₂C], combustion synthesis, **138**, 250 Fe_{2.5}Ti_{0.5}O₄ nanocrystals, obtained by mechanosynthesis and soft chemistry, structure, cation distribution, and properties, **139**, 66 Fe_{2.75}Ti_{0.25}O₄, cation distribution in, measurement by *in situ* anomalous powder diffraction with Rietveld refinement, **141**, 105 Fe₈V₁₀W₁₆O₈₅ low-spin d⁵ system, magnetic, electrical conductivity, and EPR studies, **137**, 223 ${\rm In_{16}Fe_8S_{32}}$, lithium-inserted, structure and electrochemical behavior, 138, 193 LaBa $_2$ Fe $_3$ O $_{8+w}$ (-0.20 < w < 0.83), cubic perovskite-type phase, 57 Fe Mössbauer spectroscopy, **138**, 87 LaNi_{1-x}Fe_xO_{2.5+ δ}, vacancy-ordered phase, synthesis and crystal structure, **135**, 103 $\text{Li}_{1-x}\text{Fe}_{5+x}\text{O}_{8}$, obtained by solvothermal reaction, magnetic properties, 141, 554 LiFeO₂ obtained by hydrothermal reaction, magnetic properties, **141**, 554 prepared by hydrothermal reaction and postannealing method, magnetic properties, effect of cation arrangement, **140**, 159 $\text{Li}_3\text{Fe}_2(XO_4)_3$ (X = P,As), cathode materials for rechargeable lithium batteries, 3D framework structure, 135, 228 Li₉Fe₃(P₂O₇)₃(PO₄)₂, crystal structure and cation transport properties, **138.** 32 Li₂O-Fe₂O₃-TiO₂ system, nonstoichiometric Li-pseudobrookite(ss) in, 141, 221 mechanosynthesized zinc ferrite, structural disorder in, 135, 52 $(\mathrm{Mg_xFe_{1-x}})_{3-\delta}\mathrm{O_4}$, composition (x) dependence of nonstoichiometry (δ) measurement, 139, 128 Na₃Fe₂(AsO₄)₃, cationic substitutions, associated transition from garnet to alluaudite structure, **137**, 112 $NaFe_{3.67}(PO_4)_3$, hydrothermal synthesis, structure, and characterization, 139, 152 Na-Fe/SiO₂ catalysts, surface coordinate geometry: formation of tetrahedral/octahedral site on silica surface, 137, 325 $Na_{x-\delta}Fe_xTi_{2-x}O_4$ ($x=0.875, 0 \le \delta \le 0.40$), conductivity, 137, 168 Ni–Fe alloy/magnetite composites, synthesis and microstructure, 135, 210 $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$ mixed-conducting materials, structure and property relationships, **141**, 576 YbFe₂O₄ structure type, compounds with, frustrated magnetism and spin-glass behavior, **140**, 337 Zn-Mn spinel ferrites, nanocrystals obtained by high-energy ball milling, chemical homogeneity, **141**, 10 J Jahn-Teller distortion in $LiNiO_2$, in situ X-ray absorption fine structure analysis, letter to editor, **140**, 145 Κ #### Kinetics oxidation of fuel cell cathode materials lanthanun strontium manganates(III)(IV), in situ powder diffraction studies, 141, 235 prephase state accumulation in 2-bromo-2-nitropropane-1,3-diol crystals, 137, 231 L ## Lanthanum CaS:Eu,La, Eu valencies in, 138, 149 La³⁺, doping of Na₂SO₄, effect on electrical conductivity, **138**, 369 LaAlO₃ perovskite, stability, calorimetric study, **141**, 424 La_{1-x}Ba_xCoO₃ ceramics, conductivity and IR absorption, 137, 211 $LaBa_2Cu_3O_y$, shock synthesis, effect of ionic radius difference of La^{3+} and Ba^{2+} , 136, 74 $La_2Ba_2Cu_2Ti_2O_{11-\delta}$, sol–gel synthesis and simultaneous oxidation, 138, 141 LaBa₂Fe₃O_{8+w} (-0.20 < w < 0.83), cubic perovskite-type phase, ⁵⁷Fe Mössbauer spectroscopy, **138**, 87 LaBa₂Fe₃O_{8+x} phases, powder neutron and X-ray diffraction studies, 136. 21 LaB₃O₆, crystalline and glass modifications, vibronic transitions of Gd³⁺ and Eu³⁺ in, 136, 206 $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$, electrical properties, effect of Ge^{4+} , 140, 431 $La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3$ perovskites, structural, magnetic, and electrical properties, 138, 226 La_{0.2}Ca_{0.8}MnO₃, structural and morphological changes associated with charge ordering, 140, 331 $La_{1-x}Ca_xMnO_3$, structure, stoichiometry, and phase purity, **140**, 320 $La(ClO_4)_3$, crystalline and molecular structures, **139**, 259 La₂Co₂O₅, crystal structure and magnetic properties, 141, 411 $\text{La}_4\text{Co}_3\text{O}_{10+\delta}$ (0.00 $\leq \delta \leq$ 0.30), synthesis, crystal structure, and magnetic properties, **141**, 212 LaGaO₃ perovskite Sr- and Mg-doped oxide-ion conductor, wet chemical synthesis, 136, 274 stability, calorimetric study, 141, 424 $\text{La}_2\text{Li}_{1/2}M_{1/2}\text{O}_4$ (M(III) = Co,Ni,Cu), ordered K_2NiF_4 structure and bonding properties of $M\text{O}_6$ polyhedra in related compounds, 138, 18 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$ system, synthesis, phase diagram, and conductivity, **140**, 377 La_{0.936}Mn_{0.982}O₃, magnetoresistance effects in self-doped single crystals, letter to editor, 136, 322 $\text{La}_{1-x-y}A_x\text{MnO}_{3-\delta}$ (A=Na,K), synthesis, structure, and properties, 137, 19 $\text{La}_{1-x}A_x\text{MnO}_3$ (A = Ca,Sr), charge-ordered, effect of internal pressure, letter to editor, 135, 169 La₁₂Mn₂Sb₃₀ alloy, electronic structure, 139, 8 La-Mo ultrafine particles, preparation and characterization, 140, 354 La_xMo₆Se₈ Chevrel-phase superconductor correlation of T_c and interatomic distances, 136, 151 physical and superconducting properties, 136, 160 La_{2-x}Nd_xCuO₄ system, structural transitions, **140**, 345 La_4NiLiO_8 , detection in La_2O_3 -NiO-Li₂O system at 700, 800, and 900°C, **141**, 457 LaNi_{1-x} M_x O_{2.5+ δ} (M = Mn,Fe,Co), vacancy-ordered phase, synthesis and crystal structure, **135**, 103 $LaNi_{0.95}M_{0.05}O_3$ (M = Mo,W,Sb,Ti,Cu,Zn) perovskites, metal-insulator transitions in, 136, 313 La₂NiO_{4.16}, magnetic properties, 138, 260 La₂O₃-NiO-Li₂O system, phase equilibria at 700, 800, and 900°C, **141**, 457 $La_{2-x}Pr_xNiO_{4+\delta}$, magnetic properties, 138, 260 $LaMS_3$ (M = Ti,V,Cr), high-pressure synthesis, 139, 233 La₃Si₂C₂, magnetic and electrical properties, 138, 201 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$ (0.5 $\leq x \leq$ 0.9) perovskite, synthesis and properties, 139, 388 $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4$ (0.25 $\leq x \leq$ 1.10), polaronic conduction below room temperature, **139**, 176 $\text{La}_{1-x}\text{Sr}_x\text{CrO}_3$ ($x=0\sim0.25$) perovskites, magnetic and neutron diffraction study, **141**, 404 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85}, high-temperature powder neutron diffraction, **139**, 135 La_{1-x}Sr_xMnO_{3.00}, oxidation kinetics, *in situ* powder diffraction studies, $La_5Ti_6S_3Cl_3O_{15}$, synthesis and structural characterization, **139**, 220 $La_8Ti_{10}S_{24}O_4$, synthesis and crystal structure, **136**, 46 LiLaP₄O₁₂, crystalline and glass modifications, vibronic transitions of Gd³⁺ and Eu³⁺ in, **136**, 206 $NaLa_9(GeO_4)_6O_2$ apatite, single-crystal growth and structure determination, 139, 304 $Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3$ perovskite series, structural study, 138, 307 Sr₂LaMn₂O₇, Ruddlesden-Popper phases, HRTEM study, **138**, 135 $\mathrm{Sr}_{1-x}\mathrm{La}_x\mathrm{Mo}_5\mathrm{O}_8$ (0 $\leq x \leq$ 1), synthesis and metallic properties, 138, 7 Lattice energy in modeling of thermal decomposition of solids alkaline earth carbonates, 137, 332 alkaline earth peroxides, 137, 346 Lead Bi₂Sr₂CaCu₂O_{8+δ} single crystals heavily substituted with, two-phase microstructures generating efficient pinning centers, 138, 98 Ca–Pb hydroxyapatites, thermal and structural properties and oxidation of methane, 135, 86 KPb₄(VO₄)₃ with anion-deficient apatite structure, 141, 373 NaPb₄(VO₄)₃ with anion-deficient apatite structure, **141**, 373 Pb_{1-x}In_xTe single crystals, point defect clusters revealed by X-ray diffuse scattering method, 137, 119 Pb₂MgW_xTe_(1-x)O₆ solid solution, dielectric measurements, DSC, structure, and phase diagram, **139**, 332 $Pb_x(PO_2)_4(WO_3)_{2m}$ ($6 \le m \le 10$) bronze, characterization, **139**, 362 $Pb_2Re_2O_{7-x}$ pyrochlores, synthesis and structure, **138**, 220 Pb^{II}Sn^{IV}(PO₄)₂, structure and stereochemical activity of Pb^{II} lone pair, 137, 283 (PbS)_{1.18}(TiS₂)₂, nanocomposites with poly(ethylene oxide), synthesis and characterization, **141**, 323 PdTeI, single-crystal X-ray diffraction and electronic band structure studies, 137, 206 Sr_{2-x}Pb_x(VO)(VO₄)₂ solid solutions, structural, IR, and magnetic studies, **140**, 417 #### Lewisite mixed valency, cation site splitting, and symmetry reduction, 141, 562 Liquid-mix disorder ScMnO₃ crystalline solids, 141, 78 ### Lithium $Ba_3Li_2Cl_2(MoO)_4(PO_4)_6$ with intersecting tunnel structure, synthesis, 141. 587 CsLiSO₄, ABW-type, phase transition in, symmetry analysis and atomic distortions. **138**, 267 $K_{1-x}Li_xMnF_3$ single crystal, phase transition and structure in range 100-298 K, 137, 71 $KLiNb_5O_9(PO_4)_3$, synthesis and intersecting tunnel structure related to ReO_3 , 136, 305 KLi_{1-x}(Nb,W)₅O₉(PO₄)₃, synthesis and intersecting tunnel structure related to ReO₃, **136**, 305 $\text{La}_2\text{Li}_{1/2}M_{1/2}O_4$ (M(III) = Co,Ni,Cu), ordered K₂NiF₄ structure and bonding properties of MO_6 polyhedra in related compounds, 138, 18 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$ system, synthesis, phase diagram, and conductivity, **140**, 377 La_4NiLiO_8 , detection in La_2O_3 -NiO-Li $_2O$ system at 700, 800, and 900°C, **141**, 457 La_2O_3 -NiO- Li_2O system, phase equilibria at 700, 800, and 900°C, **141**, 457 LiCd, pressure-induced phase transformation from NaTl-type phases to β -brass-type alloys, 137, 104 ## LiCoO₂ low-temperature samples and acid-delithiated products, structural features. 140, 116 single crystals, synthesis and structure refinement, letter to editor, **141**, 298 Li_{1-x}Fe_{5+x}O₈, obtained by solvothermal reaction, magnetic properties, **141**, 554 ## LiFeO₂ obtained by hydrothermal reaction, magnetic properties, **141**, 554 prepared by hydrothermal reaction and postannealing method, magnetic properties, effect of cation arrangement, **140**, 159 $\text{Li}_3\text{Fe}_2(XO_4)_3$ (X = P,As), cathode materials for rechargeable lithium batteries, 3D framework structure, 135, 228 LiF-WO₃, ammonolysis, *in situ* X-ray diffraction study: detection and crystal structure of Li_{0.84}W_{1.16}N₂, **138**, 154 Li_{1-x}H_xIO₃-type complex crystals, structure–property relationships, 135, 121 $LiI_3Bi_2Sr_2CaCu_2O_8$ layered cuprate, synthesis and characterization, 141, 452 LiIn, pressure-induced phase transformation from NaTl-type phases to β -brass-type alloys, 137, 104 Li-inserted $In_{16}Fe_8S_{32}$, structure and electrochemical behavior, **138**, 193 $Li_xK_{1-x}Bi_3S_5$, preparation, letter to editor, **136**, 328 LiLaP₄O₁₂, crystalline and glass modifications, vibronic transitions of Gd³⁺ and Eu³⁺ in, 136, 206 Li-Mn-O spinels oxygen nonstoichiometry, powder neutron diffraction study, **135**, 132 synthesis and structure, **139**, 290 LiMn₂O₄, local structure, X-ray absorption fine structure study, 141, 294 LiNbO₃ solid solutions with Mn²⁺, preparation and characterization, 140, 168 LiNi(AsO₄), spectroscopic and magnetic properties and crystal structure refinement, 141, 508 Li_xNi_{0.8}Co_{0.2}O₂ system, structural, electrochemical, and physical properties, **136**, 8 LiNiO₂, Jahn–Teller distortion in, *in situ* X-ray absorption fine structure analysis, letter to editor, **140**, 145 $\text{Li}_2\text{O-Fe}_2\text{O}_3\text{-TiO}_2$ system, nonstoichiometric Li-pseudobrookite(ss) in, **141**, 221 $\text{Li}_9M_3(\text{P}_2\text{O}_7)_3(\text{PO}_4)_2$ (M = Al,Ga,Cr,Fe), crystal structure and cation transport properties, 138, 32 LiTaO₃ solid solutions with Mn²⁺, preparation and characterization, 140, 168 Li-Ti-O system, phases formed under reducing conditions, 138, 74 LiTi₂O₄ and Li₂Ti₃O₇ ramsdellites linked in solid solutions, X-ray and neutron diffraction studies, **141**, 365 $(\text{Li}_x \text{V}_{1-x})_3 \text{BO}_5$ ($x \simeq 0.3$), disordered S=1 system, crystal structure and electronic state, **141**, 418 δLi_xV₂O₅, structural comparison to MgV₂O₅, **136**, 56 $\text{Li}_{0.84}W_{1.16}N_2$, synthesis by ammonolysis of LiF-WO₃ and crystal structure, 138, 154 LiYO₂ doped with Eu³⁺, monoclinic and tetragonal structures, refinement, 137, 242 LiZnPO₄, polymorph with cristobalite-type framework topology, 138, 126 rechargeable batteries, $\text{Li}_3\text{Fe}_2(XO_4)_3$ (X = P,As) cathode materials for, 3D framework structure, 135, 228 substitution for Na⁺ in Na₃Fe₂(AsO₄)₃, associated transition from garnet to alluaudite structure, **137**, 112 ZrNCl doped with, superconducting, electronic band structure, **138**, 207 Lone pair electrons Pb²⁺ 6s², stereochemical effect in Sr_{2-x}Pb_x(VO)(VO₄)₂ solid solutions, **140**, 417 Pb^{II}, stereochemical activity in Pb^{II}Sn^{IV}(PO₄)₂, **137**, 283 Sb(III) cations, stereochemical activity in [(CH $_3$ NH $_3$)_{1.03}K $_{2.97}$] Sb $_{12}$ S $_{20} \cdot 1.34$ H $_2$ O, **140**, 387 Luminescence spectroscopy Eu and La in codoped CaS, 138, 149 TiO₂ ultrafine particles: electronic state characterization, **139**, 124 Lutetium $KLu^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf$), synthesis and crystal structure, 139, 248 Lu₃Al₅O₁₂ garnet, stability, calorimetric study, **141**, 424 $LuBa_2Fe_3O_{8+x}$ phases, powder neutron and X-ray diffraction studies, 136, 21 Lu(ClO₄)₃, crystalline and molecular structures, 139, 259 Lu₃Ga₅O₁₂ garnet, stability, calorimetric study, **141**, 424 Lu₂W₃O₁₂, negative thermal expansion, **140**, 157 M Magnesium Ba₂Mg₆Al₂₈O₅₀, crystal structure, **136**, 258 BaO-Al₂O₃-MgO system, Al-rich part phase relationships, 136, 253 related compound Ba₂Mg₆Al₂₈O₅₀, crystal structure, 136, 258 hydrotalcite-derived MgAlO oxides calcined at varying temperatures, structural and acid/base properties, 137, 295 KMgPO₄, crystal chemistry and polymorphism, 136, 175 ``` (K_xNa_{1-x})MgF₃ perovskites, crystal chemistry and phase transitions in P-T-X space, 141, 121 LaGaO₃ perovskite-type oxide-ion conductor doped with, wet chemical synthesis, 136, 274 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85}, high-temperature powder neutron diffrac- tion, 139, 135 Mg²⁺, α-Fe₂O₃ doped with, structural characterization, 140, 428 MgCl₂, structure candidates, determination, 136, 233 MgF₂, structure candidates, determination, 136, 233 (Mg_xFe_{1-x})_{3-\delta}O_4, composition (x) dependence of nonstoichiometry (\delta) measurement, 139, 128 Mg₃N₂, vibrational spectra and decomposition, 137, 33 Mg₅Nb₄O₁₅ and Mg₅Ta₄O₁₅, crystal structure refinement by Rietveld analysis of neutron powder diffraction data, 137, 359 MgO₂, structure and stability, ab initio quantum mechanical study, 140, 103 MgO-Mg₃(PO₄)₂ systems, XRD and solid-state NMR studies, 135, 96 MgO-MnO solid solutions, energy of mixing, ab initio Hartree-Fock study, 137, 261 MgO-SiO₂ systems, mechanochemical reactions, role of water, 138, 169 MgTi₂O₅, pseudobrookite-type, crystal chemistry of cation order-dis- order in, 138, 238 MgV_2O_5, structural comparison to \delta Li_xV_2O_5, 136, 56 Pb₂MgW_xTe_(1-x)O₆ solid solution, dielectric measurements, DSC, structure, and phase diagram, 139, 332 Magnetic properties BaCo_{1-x}Cu_xS_{2-y} layered sulfide, 138, 111 Ba₂Cu₃O₄Cl₂ and Ba₃Cu₂O₄Cl₂, 141, 378 REBa_2Fe_3O_{8+w} (RE = Dy,Er,Y) triple perovskites, ⁵⁷Fe Mössbauer study, 139, 168 BaHfN₂, 137, 62 BaHf_{1-x}Zr_xN_2 solid solution, 137, 62 Bi₂Sr₂CaCu₂O_{8+δ}, heavily Pb-substituted single crystals with two- phase microstructures generating efficient pinning centers, 138, 98 Ca_3Co_{1-x}B_{1+x}O_6 (B = Ir,Ru) one-dimensional oxides, 140, 14 CaVO_{3-\delta} oxygen-deficient phases, 135, 36 Ce-Al-(Si,Ge) systems, 137, 191 CsMnHP₃O₁₀, 141, 160 Eu₃Ba₂Mn₂Cu₂O₁₂, effects of cationic substitution, 141, 546 ε-Fe₂O₃, 139, 93 Fe_8V_{10}W_{16}O_{85} low-spin d^5 system, 137, 223 LaBa_2Fe_3O_{8+w} (-0.20 < w < 0.83), cubic perovskite-type phase, ⁵⁷Fe Mössbauer spectroscopy, 138, 87 La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3 perovskites, 138, 226 La₂Co₂O₅, 141, 411 La_4Co_3O_{10+\delta} (0.00 \leq \delta \leq 0.30), 141, 212 LaCrS₃ prepared by high-pressure synthesis, 139, 233 La_{1-x-y}A_xMnO_{3-\delta} (A = Na,K), 137, 19 La₂NiO_{4.16}, 138, 260 La_{2-x}Pr_xNiO_{4+\delta}, 138, 260 La_{1-x}Sr_xCrO_3 (x = 0 ~ 0.25) perovskites, 141, 404 \text{Li}_{1-x}\text{Fe}_{5+x}\text{O}_8 obtained by solvothermal reaction, 141, 554 LiFeO2 prepared by hydrothermal reaction, 141, 554 prepared by hydrothermal reaction and postannealing method, effect of cation arrangement, 140, 159 Li_xNi_{0.8}Co_{0.2}O₂ system, 136, 8 MnTi_{1-x}Nb_xO_3 system, 136, 115 NaLnTiO_4 (Ln = Sm,Eu,Gd) layered perovskites, 138, 342 Nd_{2-x}Sr_xNiO_v, hole-doped and reduced compounds, 140, 278 Ln_{1-x}Nd_xTiO_3 (Ln = Ce,Pr; 0 \le x \le 1), letter to editor, 137, 181 MNi(AsO_4) (M = Li,Na), 141, 508 (Ni_{6-x}Cu_{x})MnO_{8}, 135, 322 Pr⁴⁺ doped in BaSnO₃, Ba₂SnO₄, and Ba₃Sn₂O₇, EPR study, 138, 329 ``` ``` ScNiP, 137, 218 R_3Si_2C_2 (R = Y,La-Nd,Sm,Gd-Tm), 138, 201 Sm_{1-x}TiO_3 (x = 0.03, 0.05, 0.10), 141, 262 Sr₃₉Co₁₂N₃₁, 141, 1 Sr_{1-x}La_xMo_5O_8 \ (0 \le x \le 1), 138, 7 Sr_{2-x}Pb_x(VO)(VO_4)_2 solid solutions, 140, 417 Sr_3MRhO_6 (M = Sm_2Eu_3Tb_2Dy_3Ho_3Er_3Yb) with K_4CdCl_6 structure- type, 139, 79 Ti₃O₅, 136, 67 U₃Te₅, 139, 356 M(VOPO_4)_2 \cdot 4H_2O (M = Co(II), Ni(II)) layered compounds with dis- tinct magnetic linear trimers, 137, 77 Magnetic structure CsMnHP₃O₁₀, 141, 160 La₂Co₂O₅, crystal structure and magnetic properties, 141, 411 RPtAl (R = Ce, Pr, Nd), 140, 233 Sm_{0.97}TiO₃, 141, 262 Sr₃Mn₂O₇, letter to editor, 141, 599 Magnetic susceptibility Bi₂Sr₂CaCu₂O₈ and Bi₂Sr₂Ca₂Cu₃O₁₀, 139, 1 CrTa₂O₆ trirutile oxide based on Cr²⁺, 140, 7 EuTIn (T = Zn,Pd,Pt,Au) intermetallic compounds, 137, 174 GdAgGe, GdAuGe, GdAu_{0.44(1)}In_{1.56(1)}, and \ GdAuIn \ antiferromagnets, (La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3, 140, 431 La_xMo₆Se₈ Chevrel-phase superconductor, 136, 160 \text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta} (0.5 \leq x \leq 0.9) perovskite, 139, 388 La_{1-x}Sr_xCrO_3 (x = 0 ~ 0.25) perovskites, 141, 404 Mn₁₁Ta₄O₂₁, 137, 276 NdMo₆O₁₂, ordered hollandite-type compound, 136, 87 Pb_x(PO_2)_4(WO_3)_{2m} (6 \leq m \leq 10) bronze, 139, 362 SrNb₂S₅ and SrTa₂S₅, 135, 325 Magnetism frustrated, in compounds with YbFe₂O₄-type structure, 140, 337 Magnetite Ni-Fe alloy/magnetite composites, synthesis and microstructure, 135, 210 Magnetization NbO(O₂)_{0.5}PO₄·2H₂O, 137, 289 Magnetoplumbite-type compounds BaGa₁₂O₁₉, preparation and crystal structure, 136, 120 Magnetoresistance effects in self-doped La_{0.936}Mn_{0.982}O₃ single crystals, letter to editor, 136, 322 Manganese Bi_{3.6}Sr_{12.4}Mn_8O_{28+\delta}, with tubular structure, synthesis and crystal chemistry, 138, 278 CaO-MnO solid solutions, energy of mixing, ab initio Hartree-Fock study, 137, 261 ``` (Ca_{1-x}Sr_x)MnO₃, Mn-O-Mn angles in, relationship to electrical prop- Eu₃Ba₂Mn₂Cu₂O₁₂, electronic and magnetic properties, effects of $K_{1-x}Li_xMnF_3$ single crystal, phase transition and structure in range KMnO₄, reduction with KBH₄ in aqueous solutions: synthesis of man- (La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O₃, electrical properties, effect of Ge⁴⁺, 140, La_{2/3}Ca_{1/3}Mn_{1-x}In_xO₃ perovskites, structural, magnetic, and electrical La_{0.2}Ca_{0.8}MnO₃, structural and morphological changes associated with La_{1-x}Ca_xMnO₃, structure, stoichiometry, and phase purity, **140**, 320 CsMnHP₃O₁₀, magnetic structure and properties, 141, 160 erties, 137, 82 100-298 K, 137, 71 431 ganese oxides, 137, 28 properties, 138, 226 charge ordering, 140, 331 cationic substitution, 141, 546 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$ system, synthesis, phase diagram, and conductivity, **140**, 377 La_{0.936}Mn_{0.982}O₃, magnetoresistance effects in self-doped single crystals, letter to editor, 136, 322 $\text{La}_{1-x-y}A_x\text{MnO}_{3-\delta}$ (A=Na,K), synthesis, structure, and properties, 137, 19 La₁₂Mn₂Sb₃₀ alloy, electronic structure, **139**, 8 $LaNi_{1-x}Mn_xO_{2.5+\delta}$, vacancy-ordered phase, synthesis and crystal structure, **135**, 103 La_{1-x}Sr_xMnO_{3.00}, oxidation kinetics, *in situ* powder diffraction studies, **141**, 235 Li-Mn-O spinels oxygen nonstoichiometry, powder neutron diffraction study, **135**, 132 synthesis and structure, **139**, 290 LiMn₂O₄, local structure, X-ray absorption fine structure study, **141**, 294 manganese oxides, synthesis by reduction of KMnO₄ with KBH₄ in aqueous solutions, 137, 28 MgO-MnO solid solutions, energy of mixing, *ab initio* Hartree-Fock study, **137**, 261 Mn^{2+} AlF₃ doped with, ESR and *ab initio* quantum chemical studies, **139**, 27 solid solutions of LiNbO₃ and LiTaO₃ with, preparation and characterization, **140**, 168 $Ln_{0.5}A_{0.5}$ MnO₃ (Ln = Nd,Gd,Y; A = Ca,Sr), charge-ordered states, distinction based on chemical melting, 137, 365 $Ln_{1-x}A_x$ MnO₃ (Ln = La, Pr, Nd; A = Ca, Sr), charge-ordered, effect of internal pressure, letter to editor, **135**, 169 MnO-NiO solid solutions, energy of mixing, ab initio Hartree-Fock study, 137, 261 Mn(ReO₄)₂ anhydrous perrhenates, crystal structure, 138, 232 Mn(ReO₄)₂·2H₂O, crystal structure, 138, 232 $Mn_{11}Ta_4O_{21}$, structure and magnetic susceptibility and refinement of $Mn_4Ta_2O_9$ structure, 137, 276 MnTi_{1-x}Nb_xO₃ system, magnetic properties, 136, 115 Mn_{0.15}V_{0.3}Mo_{0.7}O₃, characterization, **138**, 347 (Ni_{6-x}Cu_x)MnO₈, crystal structure and magnetic properties, **135**, 322 ScMnO₃ crystalline solids, liquid-mix disorder in, **141**, 78 $Sr_2LnMn_2O_7$ (Ln = Y,La,Nd,Eu,Ho), Ruddlesden-Popper phases, HRTEM study, 138, 135 Sr₃Mn₂O₇, crystal and magnetic structures, letter to editor, **141**, 599 Zn–Mn spinel ferrites, nanocrystals obtained by high-energy ball milling, chemical homogeneity, **141**, 10 Mechanical properties activated sintered boron carbide-based materials, 137, 1 Mechanochemical activation MgO-SiO₂ systems, role of water, 138, 169 $(SeO_2 + Na_2CO_3)$ mixture, for synthesis of Na_2SeO_3 in vibrational mill, 135, 256 Mechanochemical synthesis Fe-S materials, 138, 114 Fe_{2.5}Ti_{0.5}O₄ nanocrystals, **139**, 66 low-energy, Ag and Cu metals from hemioxides, 136, 51 zinc ferrite, associated structural disorder, 135, 52 Zn-Mn spinel ferrite nanocrystals obtained by, chemical homogeneity, **141**, 10 Mercury A_2 HgP₂Se₆ (A = K,Rb,Cs), synthesis, structure, and optical and thermal properties, **138**, 321 Hg_xTiS₂, host-layer restacking in, mechanism, **141**, 330 Metal-insulator transitions $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$, **140**, 431 $La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3$ perovskites, **138**, 226 in LaNi_{0.95} $M_{0.05}$ O₃ (M = Mo, W, Sb, Ti, Cu, Zn) perovskites, 136, 313 Metal-semiconductor transitions $Tl_2Ru_2O_{7-\delta}$ pyrochlore synthesized at high pressure, **140**, 182 Metastability AgI:Ag₂MoO₄ system, **140**, 91 Methane oxidation on calcium-lead hydroxyapatites, 135, 86 Methanol oxidation to formaldehyde over Mo catalysts, Mo₂O₅(OCH₃)₂ and Mo₂O₅(OCH₃)₂·2CH₃OH compounds modeling, structure, **136**, 247 N-Methylethylenediamine zirconium phosphate fluorides templated with, hydrothermal synthesis and crystal structure, **135**, 293 MIL-5 hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89 Molecular structure $Ln(ClO_4)_3$ (Ln = La, Ce, Pr, Sm, Eu, Ho, Er, Tm, Lu), 139, 259 Sn(ND₃)₂F₄, 138, 350 Molybdenum AgI:Ag₂MoO₄ system, phase diagram: devitrification and metastability, 140. 91 $Ag_{0.7}Mo_3O_7(PO_4)$ bronze built up from ReO₃-type slabs, synthesis, structure, and properties, **140**, 128 Ba₃Li₂Cl₂(MoO)₄(PO₄)₆ with intersecting tunnel structure, synthesis, 141, 587 Ba₂MoO₃F₄, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd REDOR NMR study, **140**, 285 Bi(Bi_{12-x}Te_xO₁₄)Mo_{4-x}V_{1+x}O₂₀ ($0 \le x \le 2.5$) solid solutions, synthesis and structural evolution, **139**, 185 Bi₂O₃-MoO₃, review, **137**, 42 Ce-Mo ultrafine particles, preparation and characterization, 140, 354 $Cr_{2-2x}Mo_xO_3$, preparation and characterization, 140, 350 Cu₂Th₄(MoO₄)₉, structural skeleton, 136, 199 DySr₂Cu_{2.7}Mo_{0.3}O_{7.2}, crystal structure, 141, 522 Fe₂Mo_{1-x}Ti_xO₄ spinel oxides, electrical resistivity and thermoelectric power measurements, **140**, 56 H_xMoO₃ bronze, protonic locations in, 141, 255 hydrated molybdenum bronze, Cs/Na ion exchange and synthesis of cesium molybdenum bronze at low temperature, 137, 12 La-Mo ultrafine particles, preparation and characterization, 140, 354 La_xMo₆Se₈ Chevrel-phase superconductor correlation of $T_{\rm c}$ and interatomic distances, 136, 151 physical and superconducting properties, 136, 160 $LaNi_{0.95}Mo_{0.05}O_3$ perovskites, metal–insulator transitions in, **136**, 313 $Mn_{0.15}V_{0.3}Mo_{0.7}O_3$, characterization, **138**, 347 Mo^v, in tetragonal and monoclinic phases of zirconia, EPR study, **136**, 263 Mo₂C 14 nm in average size supported on high specific surface area carbon material, synthesis, **141**, 114 $Mo_2O_5(OCH_3)_2$ and $Mo_2O_5(OCH_3)_2 \cdot 2CH_3OH$, structural analysis, 136, 247 AMoOPO₄Cl (A = K,Rb), synthesis and layer structure, 137, 214 $Al_{13}O_4(OH)_{24}(H_2O)_{12}^{7+}$ encapsulation into, and Rietveld structural characterization, 139, 22 nanocrystals, solvothermal synthesis from MoO_3 and elemental sulfur, 141, 270 NaMoO₃F, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd RE-DOR NMR study, **140**, 285 $NdMo_6O_{12}$, ordered hollandite-type compound, synthesis, crystal structure, and characterization, 136, 87 Rb₂MoO₂As₂O₇, preparation and crystal structure, 141, 500 $Sr_{1-x}La_xMo_5O_8$ (0 $\leq x \leq$ 1), synthesis and metallic properties, 138, 7 $Tl_2(MoO_3)_3PO_3CH_3$, synthesis, structure, and properties, **138**, 365 $TlNbMoO_6$ ceramics, structural and dielectric properties, **141**, 50 $ZrW_{2-x}Mo_xO_8$, low-temperature synthesis, **139**, 424 Mosaic crystals vanadyl pyrophosphate obtained by oriented nucleation and growth, 137, 311 Mössbauer spectroscopy $^{151}E_{1}$ EuTIn (T = Zn,Pd,Pt,Au) intermetallic compounds, 137, 174 NaEuTiO₄ layered perovskite, 138, 342 ⁵⁷F $REBa_2Fe_3O_{8+w}$ triple perovskites (RE=Dy,Er,Y), 139, 168 cubic perovskite-type phase $LaBa_2Fe_3O_{8+w}$ (-0.20 < w < 0.83), 138, 87 LiFeO₂ prepared by hydrothermal reaction and postannealing method, **140**, 159 Li-inserted In₁₆Fe₈S₃₂, structure and electrochemical behavior, **138**, 193 ε-Fe₂O₃, **139**, 93 Fe_{2.5}Ti_{0.5}O₄ nanocrystals synthesized by soft chemistry and high-energy ball milling, **139**, 66 ¹⁵⁵Gd, GdAgGe, GdAuGe, GdAu_{0.44(1)}In_{1.56(1)}, and GdAuIn antiferromagnets, **141**, 352 NaFe_{3.67}(PO₄)₃, **139**, 152 Sn⁴⁺-doped indium oxide and In₄Sn₃O₁₂, **135**, 140 N #### Nanocomposites poly(ethylene oxide) nanocomposites of misfit layer chalcogenides, synthesis and characterization, **141**, 323 Nanocrystals Al₂O₃-TiO₂, preparation and characterization, 141, 70 copper-doped cerium oxide, emf measurements, 140, 295 γ-Fe₂O₃, hydrothermal synthesis and characterization, 137, 185 Fe_{2.5}Ti_{0.5}O₄, obtained by mechanosynthesis and soft chemistry, structure, cation distribution, and properties, **139**, 66 MoS_2 , solvothermal synthesis from MoO_3 and elemental sulfur, 141, 270 SnO_2 , structural characterization by X-ray and Raman spectroscopy, 135, 78 tetragonal polycrystalline zirconia, doped and undoped, synthesis by spray pyrolysis, **141**, 191 Zn-Mn spinel ferrites obtained by high-energy ball milling, chemical homogeneity, **141**, 10 Negative thermal expansion Lu₂W₃O₁₂, 140, 157 NbOPO₄, tetragonal polymorph, letter to editor, 141, 303 Sc₂(WO₄)₃, 137, 148 Neodymium $KNd^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf$), synthesis and crystal structure, 139, 248 KNd₃Te₈, flat Te nets of, site occupancy wave and infinite zigzag $(Te_2^{2-})_n$ chains in, 135, 111 La_{2-x}Nd_xCuO₄ system, structural transitions, **140**, 345 Nd³⁺, doping of Na₂SO₄, effect on electrical conductivity, **138**, 369 NdAlO₃ perovskite, stability, calorimetric study, **141**, 424 $Nd_2Ba_2Cu_2Ti_2O_{11-\delta}$, sol-gel synthesis and simultaneous oxidation, 138, 141 $NdBa_2Fe_3O_{8+x}$ phases, powder neutron and X-ray diffraction studies, 136. 21 Nd₄Cu₂O₇, cooperatively distorted T' type structure, **136**, 137 NdGaO₃ perovskite, stability, calorimetric study, 141, 424 $Nd_{0.5}A_{0.5}MnO_3$ (A = Ca,Sr), charge-ordered states, distinction based on chemical melting, 137, 365 $Nd_{1-x}A_xMnO_3$ (A = Ca,Sr), charge-ordered, effect of internal pressure, letter to editor, 135, 169 NdMo₆O₁₂, ordered hollandite-type compound, synthesis, crystal structure, and characterization, **136**, 87 ${\rm Nd_4Ni_3O_8},$ crystal structure and defects, neutron diffraction and TEM studies, **140**, 307 $Nd_6Ni_{2-x}Si_3$ and $Nd_{42}Ni_{22-x}Si_{31}$, crystal structure and chemistry, 137, 302 Nd₂O₃-Co-Co₂O₃ system, thermogravimetric study at 1100 and 1150°C, **137**, 255 NdPtAl, magnetic structure, 140, 233 Nd₃Si₂C₂, magnetic and electrical properties, 138, 201 Nd_{2-x}Sr_xNiO_y, hole-doped and reduced compounds, nickel oxidation state and magnetic properties, **140**, 278 $Ln_{1-x}Nd_xTiO_3$ ($Ln = Ce,Pr; 0 \le x \le 1$), magnetic studies, letter to editor, 137, 181 Sr₂NdMn₂O₇, Ruddlesden–Popper phases, HRTEM study, **138**, 135 Neutron diffraction, *see also* Powder neutron diffraction BICOVOX.15, single-crystal structural study at room temperature, **141**, $LiTi_2O_4$ and $Li_2Ti_3O_7$ ramsdellites linked in solid solutions, 141, 365 $Sm_{0.97}TiO_3$, short-wavelength study on single crystals, 141, 262 Nickel (Co,Ni,Cu)_{1+x}(Ge,Sn) B8-type phases, modulated structures and diffuse scattering, computer simulation, **135**, 269 $\text{Eu}_{2-x}\text{Sr}_x\text{NiO}_{4+\delta}$, preparation, crystal structure, and reducibility, **141**, 99 K_2NiF_4 , structure, $La_2Li_{1/2}M_{1/2}O_4$ (M(III) = Co,Ni,Cu) with variant of 138. 18 La₂Li_{1/2}Ni_{1/2}O₄, ordered K₂NiF₄ structure and bonding properties of MO₆ polyhedra in related compounds, 138, 18 La₄NiLiO₈, detection in La₂O₃-NiO-Li₂O system at 700, 800, and 900°C, **141**, 457 LaNi_{1-x} M_x O_{2.5+ δ} (M = Mn,Fe,Co), vacancy-ordered phase, synthesis and crystal structure, **135**, 103 LaNi_{0.95}M_{0.05}O₃ (M = Mo,W,Sb,Ti,Cu,Zn) perovskites, metal-insulator transitions in, **136**, 313 La₂NiO_{4.16}, magnetic properties, **138**, 260 La₂O₃-NiO-Li₂O system, phase equilibria at 700, 800, and 900°C, **141**, 457 $La_{2-x}Pr_xNiO_{4+\delta}$, magnetic properties, **138**, 260 LiNi(AsO₄), spectroscopic and magnetic properties and crystal structure refinement, 141, 508 Li_xNi_{0.8}Co_{0.2}O₂ system, structural, electrochemical, and physical properties, 136, 8 LiNiO₂, Jahn-Teller distortion in, in situ X-ray absorption fine structure analysis, letter to editor, 140, 145 MnO-NiO solid solutions, energy of mixing, *ab initio* Hartree-Fock study, **137**, 261 NaNi(AsO₄), spectroscopic and magnetic properties, 141, 508 $Nd_4Ni_3O_8,$ crystal structure and defects, neutron diffraction and TEM studies, $\boldsymbol{140,\,307}$ $Nd_6Ni_{2-x}Si_3$ and $Nd_{42}Ni_{22-x}Si_{31}$, crystal structure and chemistry, 137, 302 Nd_{2-x}Sr_xNiO_y, hole-doped and reduced compounds, nickel oxidation state and magnetic properties, **140**, 278 NiAl₂O₄, formation from α - and γ -Al₂O₃-suppported oxides, 135, 59 Ni_y(Cr_{2-2x}In_{2x})_{1-y}S_{3-y} spinel, decomposition and X-ray powder dif- fraction, 136, 193 ($Ni_{6-x}Cu_x$)MnO₈, crystal structure and magnetic properties, 135, 322 Ni-Fe alloy/magnetite composites, synthesis and microstructure, 135, Ni_{1+x}Ge, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402 $Ni_{1-x}O$ Al-doped, spinel precipitation in, 140, 38 with dissolved Zr⁴⁺, defect clusters and superstructures, **140**, 361 Ni(ReO₄)₂ anhydrous perrhenates, crystal structure, **138**, 232 $Ni_{1+x}Sn$, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402 $Ni_{1+m}Sn_{1-x}P_x$, B8-type solid solutions, Sn/P and interstitial Ni ordering in, electron diffraction study, 136, 125 Ni_{0.25}[Ta₂S₂C], combustion synthesis, **138**, 250 Ni(II)(VOPO₄)₂·4H₂O, layered compounds with distinct magnetic linear trimers, **137**, 77 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$ nH_2O thin film, hydrothermal synthesis, **141**, 229 ScNiP, Sc-Sc bonding in, 137, 218 Sr₄Ni₃O₉, hexagonal perovskites with one-dimensional structures related to, electron microscopy, **135**, 1 Niobium Bi₂O₃-Nb₂O₅ system, review, 137, 42 CaFe_{1/2}Nb_{1/2}O₃, crystal chemistry, **138**, 272 $Ca_{1-x}Sr_xNbO_3$ ($0 \le x \le 1$) perovskite-type phases, synthesis, structure, and electron microscopy, **141**, 514 CaTi_{1-2x}Fe_xNb_xO₃ perovskite series, structural study, **138**, 272 Cs₂YbNb₆Br₁₈, twinning and atomic structure of twin interface, 141, KLiNb₅O₉(PO₄)₃, synthesis and intersecting tunnel structure related to ReO₃, 136, 305 $KLi_{1-x}(Nb,W)_5O_9(PO_4)_3$, synthesis and intersecting tunnel structure related to ReO₃, 136, 305 K₂NbO₃F, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd RE-DOR NMR study, **140**, 285 LiNbO₃ solid solutions with Mn²⁺, preparation and characterization, 140, 168 Mg₅Nb₄O₁₅, crystal structure refinement by Rietveld analysis of neutron powder diffraction data, 137, 359 MnTi_{1-x}Nb_xO₃ system, magnetic properties, **136**, 115 Nb₂O₅, high-pressure modification, **141**, 205 NbOAsO₄, intercalation of 1-alkanols and 1, ω -alkanediols into, **141**, 64 NbO(O₂)_{0.5}PO₄·2H₂O, characterization, **137**, 289 NbOPO₄ intercalation of 1-alkanols and $1,\omega$ -alkanediols into, **141**, 64 tetragonal, phase transition and negative thermal expansion, letter to editor, **141**, 303 A_3 NbS₄ ($A = Na_3$ Rb), synthesis and crystal structure, 139, 404 $ANb_4WO_9(PO_4)_3$ (A = K,Rb,Cs), synthesis and intersecting tunnel structure related to ReO_3 , 136, 305 NH₄NbWO₆ defect pyrochlore, crystal structure and phase transition, 141. 537 Rb₁₂Nb₆Se₃₅ polymer with infinite anionic chains built up by Nb₂Se₁₁ units containing Se₃⁴⁻ fragment, synthesis, structure, and properties, **140.** 97 Si_x(Ta,Nb)Te₂, structural and microstructural aspects, 139, 105 Sm₃NbSe₃O₄, synthesis and structure, 137, 122 Sr₂NbN₃, synthesis and structural characterization, 138, 297 $Sr_4Nb_4O_{14}$ – $Sr_5Nb_4O_{15}$ – $SrTiO_3$ system, perovskite-related phases in, 135, 260 SrNb₂S₅, metallic characteristics, 135, 325 $TINbXO_6$ (X = W,Mo) ceramics, structural and dielectric properties, 141, 50 Tl₈Nb_{27.2}O₇₂, synthesis and crystal structure determination by TEM and single-crystal X-ray diffraction, **135**, 282 Nitrogen, see also Ammonium BaHfN₂, synthesis, structure, and magnetic properties, 137, 62 $BaHf_{1-x}Zr_xN_2$ solid solution, synthesis, structure, and magnetic properties, 137, 62 BaThN₂, synthesis and structural characterization, 138, 297 RBi₂O₄NO₃ (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), preparation and crystal structure, **139**, 321 M_2 BN₂X (M = Ca,Sr; X = F,Cl), compounds with isolated BN₂³⁻ units, 135. 194 α-Ca₃N₂, vibrational spectra and decomposition, 137, 33 (1:1) $Cd_{3}^{II}[(Tr^{II}/Cr^{III})(CN)_{6}]_{2} \cdot 15H_{2}O$ complexes (Tr = Co, Fe), structural and spectral studies, **140**, 140 [(CH₃)₂N(CH₂CH₂)₂O]Ag₄I₅, silver ion distribution and flow in, cooperative disorder model, **140**, 1 $(C_4H_{12}\bar{N}_2)_2[Fe_6(HPO_4)_2(PO_4)_6(H_2O)_2]\cdot H_2O$ templated by piperazine, synthesis and characterization, **139**, 326 $[(CH_3NH_3)_{1.03}K_{2.97}]Sb_{12}S_{20} \cdot 1.34H_2O$, hydrothermal synthesis and crystal structure, **140**, 387 $C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O$, crystal structure and thermal behavior, **141**, 343 $C_6H_{18}N_3^{2+} \cdot 2HPO_4^- \cdot 4H_2O$, crystal structure and thermal behavior, 141, 343 Cu^{II}₂Fe^{II}(CN)₆ and Cu^{II}₃[Fe^{III}(CN)₆]₂, mechanisms of Cs sorption on, relationship to crystal structure, **141**, 475 diglycine hydrogen selenite, crystal structure, vibrational spectra, and DSC measurement, **140**, 71 ethylenediamine-templated zinc arsenate and aluminum cobalt phosphate, synthesis and zeolite-type structures, 136, 210 $\text{Li}_{0.84}W_{1.16}N_2$, synthesis by ammonolysis of LiF-WO $_3$ and crystal structure, 138, 154 Mg₃N₂, vibrational spectra and decomposition, 137, 33 monoglycine-selenious acid crystals, vibrational spectra and DSC measurement, 140, 71 MNX (M = Zr, Ti; X = Cl, Br, I) system, electronic band structure, 138, 207 $NaNO_3$, dispersion on ZrO_2 : effect of supported Na^+ on ZrO_2 texture properties, 138, 41 $[N_2C_3H_5][AlP_2O_8H_2\cdot 2H_2O]$ and $2[N_2C_3H_5][Al_3P_4O_{16}H],$ synthesis and structure, letter to editor, 136, 141 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$, connected through hydrogen bonding, synthesis and structure, **139**, 207 [NH₃(CH₂)₄NH₃][Ga(PO₄)(PO₃OH)], synthesis and characterization, 136, 227 $[NH_{3}(CH_{2})_{8}NH_{3}]_{3}[V_{15}O_{36}(Cl)](NH_{3})_{6}(H_{2}O)_{3},$ synthesis and structure, $136,\,298$ $Sn(ND_3)_2F_4$, structure, implications for synthesis of nitride fluorides, 138, 350 $[Sn_2(PO_4)_2]^2$ $[C_2N_2H_{10}]^{2+}$ \cdot H_2O , synthesis and crystal structure, **140**, Sr₃₉Co₁₂N₃₁, synthesis, structure, and magnetic properties, 141, 1 Sr₂NbN₃, synthesis and structural characterization, 138, 297 Nuclear magnetic resonance ²⁷Al, MAS study of hydrotalcite-derived MgAlO oxides calcined at varying temperatures, 137, 295 ¹⁹F MAS and ¹⁹F-¹¹³Cd REDOR study of oxygen/fluorine ordering in oxyfluorides, **140**, 285 H_xMoO₃ bronze, protonic locations in, 141, 255 magnesium oxide-magnesium orthophosphate systems, 135, 96 ²⁹Si, MAS study of mechanochemical reactions of MgO–SiO₂ systems, 138, 169 Nuclear quadrupole resonance $Y_2Ba_4Cu_7O_{15-\delta}$, **139**, 266 Nucleation oriented, in preparation of mosaic crystals of vanadyl pyrophosphate, 137, 311 O Onium ions geometry, role in synthesis of regularly ordered heterostructures, 139, 281 ``` Optical basicity table ``` for oxidic systems, 137, 94 ## Optical properties Bi_2S_3 thin films prepared by thermal evaporation and chemical bath deposition, 136, 167 CuAl₂Si₂O₇(F,OH)₂, **141**, 527 D3C-THF: analysis of cubic/tetragonal phase transition, **137**, 87 diaminoanthraquinone, effect of substitution pattern, **141**, 309 In–Bi₂S₃ annealed thin films, **138**, 290 K₄In₂(PSe₅)₂(P₂Se₆), one-dimensional compounds, **136**, 79 $\text{Li}_{1-x}\text{H}_x\text{IO}_3$ -type complex crystals, relationship to structure, 135, 121 $A_2MP_2Se_6$ (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), 138, 321 Rb₃Sn(PSe₅)(P₂Se₆), one-dimensional compounds, **136**, 79 Sb₂Te₃ single crystals with incorporated Ag, **140**, 29 ## Order-disorder transition bicyclononanone, spectroscopic and differential scanning calorimetric studies, 136, 16 ε-Fe₂O₃, **139**, 93 ### Ordering $REBa_2Fe_3O_{8+w}$ (RE = Dy,Er,Y) triple perovskites, ⁵⁷Fe Mössbauer study, **139**, 168 charge, in La_{0.2}Ca_{0.8}MnO₃, associated structural and morphological changes, **140**, 331 p-dialkylbenzene-urea inclusion compounds, 141, 437 metal atoms in wurtzite and sphalerite structures, 138, 334 oxygen/fluorine in oxyfluorides, ¹⁹F MAS and ¹⁹F-¹¹³Cd REDOR NMR study, **140**, 285 short-range, in $(1-x)Bi_2O_3 \cdot xCaO \gamma$ -type solid solution, electron diffraction study and relationship to low-temperature $Ca_4Bi_6O_{13}$, 135, 201 Sn/P and intersitial Ni in Ni_{1+m}Sn_{1-x}P_x B8-type solid solutions, electron diffraction study, **136**, 125 ## Oxidation Ln_2 Ba $_2$ Cu $_2$ Ti $_2$ O $_{11-\delta}$ (Ln = La,Nd,Eu,Tb), simultaneously with sol-gel synthesis, 138, 141 fuel cell cathode materials lanthanun strontium manganates(III)(IV), kinetics, *in situ* powder diffraction studies, **141**, 235 methane on calcium-lead hydroxyapatites, 135, 86 methanol to formaldehyde over Mo catalysts, $Mo_2O_5(OCH_3)_2$ and $Mo_2O_5(OCH_3)_2 \cdot 2CH_3OH$ compounds modeling, structure, 136, 247 Oxidation catalysts bulk optical basicity table for, 137, 94 Oxidation/reduction reversible, in CeTaO_{4+ δ} system, TEM and XRD study, **140**, 20 ## Oxidation state nickel in hole-doped and reduced $Nd_{2-x}Sr_xNiO_y$ compounds, 140, 278 ## Oxygen atomic positions in Ga-In-Sn-O ceramic, determination with direct methods and electron diffraction, letter to editor, **136**, 145 half filling of O intercalation in ErBa₂Cu₃O_{6.5}, new orthorhombicity type and cell volume expansions near, 135, 307 nonstoichiometry $Bi_2Sr_2Co_{6+\delta}$ ceramic, 136, 1 $CaVO_{3-\delta}$, 135, 36 Li-Mn-O spinel oxides, powder neutron diffraction study, 135, oxygen/fluorine ordering in oxyfluorides, ^{19}F MAS and $^{19}F^{-113}Cd$ REDOR NMR study, 140, 285 release behavior of $CeZrO_4$ powders and appearance of compounds κ and t^* , 138, 47 Oxygen permeability $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$ materials, **141**, 576 Ρ Packing models high-pressure polymeric phases of C₆₀, 141, 164 Palladium Cs_2PdSe_8 , synthesis and open framework structure with double helical assemblies of $[Pd(Se_4)_2]^{2-}$, letter to editor, **140**, 149 EuPdIn intermetallic compounds, ¹⁵¹Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174 A_2 PdP₂Se₆ (A = K,Rb,Cs), synthesis, structure, and optical and thermal properties, **138**, 321 Paramagnetic doping solid aluminum fluorides: ESR and *ab initio* quantum chemical studies, **139.** 27 #### Percolation proton conduction in polymer/brushite composites, 141, 392 Perovskites BaBiO₃, disproportionation in, stabilization, contrast with stabilization of spontaneous polarization of H₂ molecules, **138**, 369 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$ (Ln = La,Nd,Eu,Tb), sol-gel synthesis and simultaneous oxidation, 138, 141 $REBa_2Fe_3O_{8+w}$ (RE = Dy,Er,Y), ⁵⁷Fe Mössbauer study, **139**, 168 BaScO₂F, synthesis and structure, 139, 422 $BaSnO_3$, Ba_2SnO_4 , and $Ba_3Sn_2O_7$, Pr^{4+} doped in, EPR study, 138, 329 in $Ba_5Ta_4O_{15}$ – $MZrO_3$ (M = Ba,Sr) system, synthesis and structural study, **141**, 492 (Ca_{1-x}Sr_x)MnO₃, Mn–O–Mn angles in, relationship to electrical properties, **137**, 82 $Ca_{1-x}Sr_xNbO_3$ (0 $\leq x \leq$ 1) phases, synthesis, structure, and electron microscopy, **141**, 514 $CaTi_{1-2x}Fe_xNb_xO_3$, structural study, **138**, 272 CaTiO₃, Gd-doped, charge compensation in, **124**, 77; comment, **137**, 355; reply, **137**, 357 hexagonal, with one-dimensional structures related to ${\rm Sr_4Ni_3O_9},$ electron microscopy, 135, 1 $K_{1-x}Li_xMnF_3$ single crystal, phase transition and structure in range 100–298 K, 137, 71 $(K_xNa_{1-x})MgF_3$, crystal chemistry and phase transitions in P-T-X space, **141**, 121 $LaBa_2Fe_3O_{8+w}$ (-0.20 < w < 0.83), cubic phase, ⁵⁷Fe Mössbauer spectroscopy, **138**, 87 $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$, effect of Ge^{4+} , electrical properties, effect of Ge^{4+} , 140, 431 La_{2/3}Ca_{1/3}Mn_{1-x}In_xO₃, structural, magnetic, and electrical properties, 138, 226 La_{0.2}Ca_{0.8}MnO₃, structural and morphological changes associated with charge ordering, 140, 331 LaGaO₃, Sr- and Mg-doped oxide-ion conductor, wet chemical synthesis, 136, 274 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$ system, synthesis, phase diagram, and conductivity, **140**, 377 $LaNi_{0.95}M_{0.05}O_3$ (M = Mo,W,Sb,Ti,Cu,Zn), metal–insulator transitions in, 136, 313 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$ (0.5 $\leq x \leq$ 0.9), synthesis and properties, **139**, 388 $\text{La}_{1-x}\text{Sr}_x\text{CrO}_3$ ($x=0\sim0.25$), magnetic and neutron diffraction study, 141, 404 $Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3$, structural study, 138, 307 $NaLnTiO_4$ (Ln = Sm,Eu,Gd), magnetic properties, 138, 342 $LnMO_3$ (Ln = La-Lu, Y; M = Al,Ga), stability, calorimetric study, **141**, 424 related phases in Sr₄Nb₄O₁₄–Sr₅Nb₄O₁₅–SrTiO₃ system, **135**, 260 Phase analysis quantitative, $Zr_xTi_{1-x}O_2$ (x = 0.22,0.39,0.60) prepared by sol-gel synthesis, **139**, 225 Phase composition In_2S_3 thin films, study by diffraction of synchrotron radiation, 137, 6 Phase diagrams AgI:Ag₂MoO₄ system: devitrification and metastability, 140, 91 Ba-Cu-O-Cl system, 141, 378 $ACI/TmCl_3$ (A = Cs,Rb,K), 135, 127 EuI₂-KI, **136**, 134 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$ system, 140, 377 Nd₂O₃-Co-Co₂O₃ system, 137, 255 NiCr₂S₄-NiIn₂S₄-Cr₂S₃-In₂S₃, **136**, 193 $Pb_2MgW_xTe_{(1-x)}O_6$ solid solution, 139, 332 Ru-Y system, optimization, 138, 302 Phase relations BaO-Al₂O₃-MgO system, Al-rich part, 136, 253 BiO_{1.5}-YbO_{1.5}-CuO system, **139**, 398 $CaVO_{3-\delta}$ oxygen-deficient phases, 135, 36 Ce-Al-(Si,Ge) systems, 137, 191 La₂O₃-NiO-Li₂O system at 700, 800, and 900°C, **141**, 457 in Li₂O-Fe₂O₃-TiO₂ system, **141**, 221 Li₂O-TiO₂-Ti₂O₃ system under reducing conditions, 138, 74 Nd_2O_3 -Co- Co_2O_3 system at 1100 and 1150°C, thermogravimetric study, 137, 255 Sr₄Nb₄O₁₄-Sr₅Nb₄O₁₅-SrTiO₃ system, 135, 260 Phase stabilization tetragonal nanophases of nondoped sol-gel ZrO₂ prepared with hydrolysis catalysts, **135**, 28 Phase transformations ABW-type CsLiSO₄, symmetry analysis and atomic distortions, **138**, 267 $Bi_2Sr_2CaCu_2O_8$ to $Bi_2Sr_2Ca_2Cu_3O_{10}$, 139, 1 Bi₂Te₄O₁₁, **135**, 175 2-bromo-2-nitropropane-1,3-diol crystals, 137, 231 Ca₃(VO₄)₂ amorphization at high pressure, 139, 161 cubic/tetragonal, in D3C-THF, optical and X-ray powder diffraction study, 137, 87 $H_{0.27}V_{0.27}W_{0.73}O_3\cdot 1/3H_2O$ to $V_{0.27}W_{0.73}O_{2.865},$ X-ray, thermal, and HREM studies, 136, 284 K_{1-x}Li_xMnF₃ single crystal in range 100–298 K, **137**, 71 $(K_xNa_{1-x})MgF_3$ perovskites in P-T-X space, **141**, 121 La_{0.2}Ca_{0.8}MnO₃, associated with charge ordering, **140**, 331 $La_{2-x}Nd_xCuO_4$ system, **140**, 345 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85}, high-temperature powder neutron diffraction study, 139, 135 LiIn and LiCd under pressure from NaTl-type phases to β -brass-type alloys, 137, 104 Na₃Fe₂(AsO₄)₃ from garnet to alluaudite structure after cationic substitutions, 137, 112 Nb₂O₅ at high pressure, 141, 205 NbOPO₄, tetragonal polymorph, letter to editor, 141, 303 NH₄NbWO₆ defect pyrochlore, **141**, 537 order–disorder, in bicyclononanone, spectroscopic and differential scanning calorimetric studies, **136**, 16 RPtAl (R = Ce, Pr, Nd), 140, 233 Ti₃O₅, **136**, 67 $VO_2(A)$, mechanism, **141**, 594 Y₄Al₂O₉ at high temperature, 141, 466 $\rm ZrV_2O_7,$ temperature-dependent, in situ electron and X-ray diffraction studies, 137, 161 Phonons, see Electron-phonon coupling Phosphorus Ag_{0.7}Mo₃O₇(PO₄) bronze built up from ReO₃-type slabs, synthesis, structure, and properties, 140, 128 $AgXPO_4$ (X = Be,Zn), crystal structures and crystal chemistry, 141, BaBPO₅, crystal structure and thermal decomposition, 135, 43 $Ba_3Li_2Cl_2(MoO)_4(PO_4)_6$ with intersecting tunnel structure, synthesis, 141. 587 Ba₃V₂O₃(PO₄)₃, with chain-like structure, 135, 302 Ba₂(VO₂)(PO₄)(HPO₄)·H₂O, with trigonal bipyramidal VO₅ groups, hydrothermal synthesis and crystal structure, **140**, 272 Bi_{6.67}(PO₄)₄O₄, synthesis and crystal structure, **139**, 274 $\text{Bi}_9(V_{1-x}P_x)_2\text{ClO}_{18}$ series $(0 \le x \le 1)$, synthesis, crystal structure, IR characterization, and electrical properties, 136, 34 CaHPO₄·2H₂O phosphates, composites with polymer, percolation and modeling of proton conduction in, **141**, 392 Cd₄P₂Cl₃, crystal structure, **137**, 138 Cd₇P₄Cl₆, crystal structure, 137, 138 (C₄H₁₂N₂)₂[Fe₆(HPO₄)₂(PO₄)₆(H₂O)₂] · H₂O templated by piperazine, synthesis and characterization, **139**, 326 C₃H₁₂N₂²⁺·HPO₄^{2−}·H₂O, crystal structure and thermal behavior, **141**, 343 $C_6H_{18}N_3^{2+} \cdot 2HPO_4^- \cdot 4H_2O$, crystal structure and thermal behavior, 141, 343 Cs₃(HSeO₄)₂(H₂PO₄), synthesis and crystal structure, **141**, 317 Cs₅(HSeO₄)₃(H₂PO₄)₂, synthesis and crystal structure, 141, 317 Cs₅(HSO₄)₃(H₂PO₄)₂, solid acid with unique hydrogen bond network, X-ray diffraction study, **140**, 251 β -Cs₃(HSO₄)₂[H_{2-x}(P_{1-x},S_x)O₄] ($x \sim 0.5$) superprotonic conductor, structure and vibrational spectrum, **139**, 373 CsMnHP₃O₁₀, magnetic structure and properties, 141, 160 $Cs_4(SeO_4)(HSeO_4)_2(H_3PO_4), \ synthesis \ and \ crystal \ structure, \ \textbf{141}, \ 317 \\ Cs_5VW_4O_9VO_4(PO_4)_4, \ air \ synthesis \ and \ intersection \ tunnnels, \ \textbf{141}, \ 155$ CuInP₂S₆, soft-chemistry forms, 141, 290 1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and physical properties, 136, 93 ethylenediamine-templated aluminum cobalt phosphate, synthesis and zeolite-type structure, **136**, 210 ethylenediamine-templated 1-D [enH₂][Zr(HPO₄)₃] and 2-D [enH₂]_{0.5}[Zr(PO₄)(HPO₄)], crystal structures, **140**, 46 H₂O-Na₂SO₄-Na₂HPO₄ system, isotherms, conductivity measurements, **140**, 316 (H₂O)[V₂O₂(OH){O₃P(CH₂)₂PO₃}], hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89 KH₂PO₄, high-temperature form, preparation and crystal structure, 141, 486 K₄In₂(PSe₅)₂(P₂Se₆), one-dimensional compounds, synthesis, structure, and optical and thermal properties, 136, 79 KLiNb₅O₉(PO₄)₃, synthesis and intersecting tunnel structure related to ReO₃, **136**, 305 $KLi_{1-x}(Nb,W)_5O_9(PO_4)_3$, synthesis and intersecting tunnel structure related to ReO_3 , 136, 305 KMgPO₄, crystal chemistry and polymorphism, 136, 175 Li₃Fe₂(PO₄)₃, cathode materials for rechargeable lithium batteries, 3D framework structure, 135, 228 $LiLaP_4O_{12},$ crystalline and glass modifications, vibronic transitions of $Gd^{3\,+}$ and $Eu^{3\,+}$ in, $136,\,206$ $\text{Li}_9M_3(\text{P}_2\text{O}_7)_3(\text{PO}_4)_2$ (M = Al,Ga,Cr,Fe), crystal structure and cation transport properties, 138, 32 LiZnPO₄, polymorph with cristobalite-type framework topology, 138, $MgO-Mg_3(PO_4)_2$ systems, XRD and solid-state NMR studies, 135, 96 AMoOPO₄Cl (A=K,Rb), synthesis and layer structure, 137, 214 Na₅[B₂P₃O₁₃], hydrothermal and microwave-assisted synthesis, letter to editor, **140**, 154 NaFe $_{3.67}(PO_4)_3$, hydrothermal synthesis, structure, and characterization, 139, 152 $Na_4P_2S_6 \cdot 6H_2O$, single-crystal structure determination, 141, 274 NbO(O₂)_{0.5}PO₄·2H₂O, characterization, 137, 289 NbOPO₄ intercalation of 1-alkanols and 1,ω-alkanediols into, 141, 64 tetragonal, phase transition and negative thermal expansion, letter to editor. **141**, 303 $ANb_4WO_9(PO_4)_3$ (A = K,Rb,Cs), synthesis and intersecting tunnel structure related to ReO₃, 136, 305 $[N_2C_3H_5][AlP_2O_8H_2 \cdot 2H_2O]$ and $2[N_2C_3H_5][Al_3P_4O_{16}H]$, synthesis and structure, letter to editor, **136**, 141 [N(C₂H₅NH₃)₃]³⁺[Sn(PO₄)(HPO₄)]³⁻·4H₂O, connected through hydrogen bonding, synthesis and structure, **139**, 207 [NH₃(CH₂)₄NH₃][Ga(PO₄)(PO₃OH)], synthesis and characterization, 136, 227 NH₄VP₂O₇, structural study by X-ray powder diffraction, **136**, 181 $Ni_{1+m}Sn_{1-x}P_x$, B8-type solid solutions, Sn/P and interstitial Ni ordering in, electron diffraction study, **136**, 125 M_2 P intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218 $Pb_x(PO_2)_4(WO_3)_{2m}$ (6 $\leq m \leq$ 10) bronze, characterization, **139**, 362 $Pb^{II}Sn^{IV}(PO_4)_2$, structure and stereochemical activity of Pb^{II} lone pair, $A_2MP_2Se_6$ (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), synthesis, structure, and optical and thermal properties, **138**, 321 Rb₃Sn(PSe₅)(P₂Se₆), one-dimensional compounds, synthesis, structure, and optical and thermal properties, **136**, 79 ScNiP, Sc-Sc bonding in, 137, 218 $[Sn_2(PO_4)_2]^2$ $[C_2N_2H_{10}]^{2+}$ \cdot H_2O , synthesis and crystal structure, **140**, 435 Sn₂(PO₄)[C₂O₄]_{0.5} containing one-dimensional tin phosphate chains, synthesis and structure, **139**, 200 Sn₂P₂S₆, soft-chemistry forms, **141**, 290 Ti(PO₄)(H₂PO₄), crystal structure from neutron powder data, **140**, 266 Tl₂(MoO₃)₃PO₃CH₃, synthesis, structure, and properties, **138**, 365 (VO)₂P₂O₇, mosaic crystals obtained by oriented nucleation and growth, **137**, 311 $M(\text{VOPO}_4)_2 \cdot 4\text{H}_2\text{O}$ (M = Co(II), Ni(II)), layered compounds with distinct magnetic linear trimers, 137, 77 zirconium phosphate fluorides templated with amines, hydrothermal synthesis and crystal structure, 135, 293 Zn(O₃PC₆H₅)·H₂O, thermal behavior, **140**, 62 $\gamma\text{-}Zn_2P_2O_7,$ structure determination from X-ray powder diffraction data, 140, 62 Zr_{2.7}Hf_{11.3}P₉, bonding and site preferences, 136, 221 Photoluminescence spectroscopy Eu and La in codoped CaS, 138, 149 TiO₂ ultrafine particles: electronic state characterization, **139**, 124 Pillared materials porous chromia-pillared tetratitanate, synthesis, 136, 320 Piperazine $(C_4H_{12}N_2)_2[Fe_6(HPO_4)_2(PO_4)_6(H_2O)_2] \cdot H_2O$ templated by, synthesis and characterization, **139**, 326 Platinum $Ba_4(Ba_xPt_{1-x}^{2+})Pt_2^{4+}O_9$ twinned crystal, diffraction and DAFS studies, **140**, 201 Ba–Pt–O system ($\frac{4}{3} < Y = \text{Ba/Pt} < \frac{5}{2}$), synthesis and crystal structure, **140**, 194 EuPtIn intermetallic compounds, ¹⁵¹Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174 RPtAl (R = Ce, Pr, Nd), magnetic structures, **140**, 233 Pnictides M_2X intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218 Polarization spontaneous, H₂ molecules, stabilization of, contrast with stabilization of diproportionation in BaBiO₃, letter to editor, **138**, 369 Polaronic conduction $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4$ (0.25 $\leq x \leq$ 1.10) below room temperature, **139**, 176 Poly(ethylene oxide) nanocomposites of misfit layer chalcogenides, synthesis and characterization, **141**, 323 Polymers brushite composites with, percolation and modeling of proton conduction in, **141**, 392 C₆₀, high-pressure phases, packing models, 141, 164 Rb₁₂Nb₆Se₃₅, with infinite anionic chains built up by Nb₂Se₁₁ units containing Se₃⁴⁻ fragment, synthesis, structure, and properties, **140**, 97 [Zn(4,4'-bipy)(H₂O)(SO₄)] · 0.5H₂O, with interwoven double-layer structure, synthesis and characterization, **138**, 361 Polyphenylene sulfide composites with brushite, percolation and modeling of proton conduction in, 141, 392 Potassium [(CH $_3$ NH $_3$) $_{1.03}$ K $_{2.97}$]Sb $_{12}$ S $_{20} \cdot 1.34$ H $_2$ O, hydrothermal synthesis and crystal structure, **140**, 387 EuI₂-KI binary system, phase diagram, 136, 134 KBH₄, reduction of KMnO₄ in aqueous solutions: synthesis of manganese oxides, **137**, 28 K₄Bi₂O₅, synthesis and crystal structure, **139**, 342 KBi₃S₅, open-framework semiconductors, preparation of topotactic derivatives of, letter to editor, **136**, 328 KCl/TmCl₃, phase diagrams and thermodynamics, 135, 127 (KCl)_x(UCl₄)_y, deposition inside carbon nanotubes using eutectic and noneutectic mixtures of UCl₄ with KCl, **140**, 83 $KLn^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf; Ln^{III} = Ce-Lu$), synthesis and crystal structure, **139**, 248 KH₂PO₄, high-temperature form, preparation and crystal structure, 141, 486 $K_4In_2(PSe_5)_2(P_2Se_6),$ one-dimensional compounds, synthesis, structure, and optical and thermal properties, ${\bf 136,\ 79}$ K_{1-x}Li_xMnF₃ single crystal, phase transition and structure in range 100-298 K, **137**, 71 KLiNb₅O₉(PO₄)₃, synthesis and intersecting tunnel structure related to ReO₃, **136**, 305 $KLi_{1-x}(Nb,W)_5O_9(PO_4)_3$, synthesis and intersecting tunnel structure related to ReO_3 , 136, 305 KMgPO₄, crystal chemistry and polymorphism, 136, 175 $KMnO_4$, reduction with KBH_4 in aqueous solutions: synthesis of manganese oxides, 137, 28 KMoOPO₄Cl, synthesis and layer structure, 137, 214 $(K_xNa_{1-x})MgF_3$ perovskites, crystal chemistry and phase transitions in P-T-X space, 141, 121 K₂NbO₃F, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd RE-DOR NMR study, **140**, 285 KNb₄WO₉(PO₄)₃, synthesis and intersecting tunnel structure related to ReO₃, 136, 305 KNd_3Te_8 , flat Te nets of, site occupancy wave and infinite zigzag $(Te_2^{2-})_n$ chains in, 135, 111 K_2NiF_4 , structure, $La_2Li_{1/2}M_{1/2}O_4$ (M(III) = Co,Ni,Cu) with variant of, 138, 18 KPb₄(VO₄)₃ with anion-deficient apatite structure, **141**, 373 $K_2MP_2Se_6$ (M=Pd,Zn,Cd,Hg), synthesis, structure, and optical and thermal properties, 138, 321 $K_2Sn_4S_9$ layered compounds, flux synthesis and characterization, 141, 17 $KTb^{\text{III}}Tb_2^{\text{IV}}F_{12},$ synthesis and crystal structure, 139, 248 K₄Zr₆Br₁₈C, structure, 139, 85 $La_{1-x-y}K_xMnO_{3-\delta}$, synthesis, structure, and properties, 137, 19 Potential energy surface crystalline AB_2 systems, 136, 233 ``` Powder neutron diffraction Pr_{1-x}A_xMnO_3 (A = Ca,Sr), charge-ordered, effect of internal pressure, Ba₃AlO₄H, 141, 570 letter to editor, 135, 169 Pr_{1-x}Nd_xTiO_3 (0 \leq x \leq 1), magnetic studies, letter to editor, 137, 181 RBa_2Fe_3O_{8+x} phases (R = La,Nd,Sm,Gd,Dy,Er,Yb,Lu,Y), 136, 21 RBi_2O_4NO_3 (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), 139, 321 PrPtAl, magnetic structure, 140, 233 Pr₃Si₂C₂, magnetic and electrical properties, 138, 201 Ga_{3-x}In_{5+x}Sn_2O_{16}, 140, 242 A_4A'\operatorname{Ir}_2\operatorname{O}_9 (A = Sr,Ba; A' = \operatorname{Cu}_2\operatorname{Zn}), commensurate and incommensur- effects on (K_xNa_{1-x})MgF₃ perovskites, 141, 121 ate phases, 136, 103 La₂Co₂O₅, 141, 411 GeSe₂ amorphization induced by, analysis, 141, 248 La_{2-x}Nd_xCuO₄ system, structural transitions, 140, 345 induction of phase transformation of LiIn and LiCd from NaTl-type La_{1-x}Sr_xCrO_3 (x = 0 ~ 0.25) perovskites, 141, 404 phases to \beta-brass-type alloys, 137, 104 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85} at high temperature, 139, 135 internal, effect on charge-ordered rare earth manganates, letter to editor, LiYO₂ doped with Eu³⁺, refinement of monoclinic and tetragonal struc- 135, 169 tures at 77 and 383 K, 137, 242 Protons Mg₅Nb₄O₁₅ and Mg₅Ta₄O₁₅, crystal structure refinement by Rietveld conduction in polymer/brushite composites, percolation and modeling, analysis, 137, 359 Nd₄Ni₃O₈, 140, 307 locations in H_xMoO₃ bronze, 141, 255 oxygen nonstoichiometry in Li-Mn-O spinel oxides, 135, 132 Pseudobrookite Sn⁴⁺-doped indium oxide and In₄Sn₃O₁₂, 135, 140 nonstoichiometric Li-pseudobrookite(ss) in Li₂O-Fe₂O₃-TiO₂ system, Sn(ND₃)₂F₄, 138, 350 Ti(PO₄)(H₂PO₄), 140, 266 related MgTi₂O₅, crystal chemistry of cation order-disorder in, 138, 238 Y₄Al₂O₉ at high temperature, 141, 466 Pyrochlores Powder X-ray diffraction Bi_{1.74}Ti_2O_{6.62}, synthesis and structure, 136, 63 Ba_4(Ba_xPt_{1-x}^{2+})Pt_2^{4+}O_9 twinned crystal, 140, 201 defect, NH₄NbWO₆, crystal structure and phase transition, 141, 537 RBa_2Fe_3O_{8+x} phases (R = La,Nd,Sm,Gd,Dy,Er,Yb,Lu,Y), 136, 21 Lewisite, mixed valency, cation site splitting, and symmetry reduction, Ba_5Ta_4O_{15}–MZrO_3 (M = Ba_5Sr) system, hexagonal perovskites in, 141, 141, 562 A_2M_2O_{7-y} (M = Ru,Ir), structural and electronic properties, 136, 269 BiO_{1.5}-YbO_{1.5}-CuO system, 139, 398 Pb₂Re₂O_{7-x}, synthesis and structure, 138, 220 Bi₂Sr₂CaCu₂O₈ and Bi₂Sr₂Ca₂Cu₃O₁₀, 139, 1 Tl₂Ru₂O_{7-δ}, high-pressure synthesis, crystal structure, and metal- Bi₂Te₄O₁₁ phase transitions, 135, 175 semiconductor transitions, 140, 182 D3C-THF: analysis of cubic/tetragonal phase transition, 137, 87 Pyrolysis synthesis of doped and undoped nanopowders of tetragonal polycrystal- DySr₂Cu_{2.7}Cr_{0.3}O_{7.2} and DySr₂Cu_{2.7}Mo_{0.3}O_{7.2}, 141, 522 EuI₂-KI binary system, 136, 134 line zirconia by spray pyrolysis, 141, 191 Eu_{2-x}Sr_xNiO_{4+\delta}, 141, 99 PZT thin films fuel cell cathode materials lanthanum strontium manganates(III)(IV): in preparation on stainless steel using electrochemical reduction, 136, 293 situ study of oxidation kinetics, 141, 235 Ga_{3-x}In_{5+x}Sn_2O_{16}, 140, 242 Q H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O phase transitions to V_{0.27}W_{0.73}O_{2.865}, Quantum chemistry 136, 284 Mn²⁺-doped AlF₃, ab initio calculations, and ESR studies, 139, 27 in situ anomalous, with Rietveld refinement, in measurement of cation MO_2 (M = Ba,Sr,Ca,Mg,Be), ab initio study of structure and stability, distribution in Fe_{2.75}Ti_{0.25}O₄, 141, 105 140, 103 La₂Co₂O₅, 141, 411 Quotient graphs La₈Ti₁₀S₂₄O₄, 136, 46 isomorphic, geometrical relationships between nets mapped on, 138, 55 LiNbO₃ and LiTaO₃ solid solutions with Mn²⁺, 140, 168 LiNi(AsO₄), 141, 508 MIL-5 composite microporous compounds, 141, 89 Mo₂O₅(OCH₃)₂ and Mo₂O₅(OCH₃)₂ · 2CH₃OH, 136, 247 Raman spectroscopy Nb₂O₅ modified at high pressure, 141, 205 BaFe₁₂O₁₉ hexagonal ferrite, 137, 127 NH₄VP₂O₇, 136, 181 α-Ca₃N₂, 137, 33 Ni_y(Cr_{2-2x}In_{2x})_{1-y}S_{3-y} spinel, 136, 193 \beta-Cs₃(HSO₄)₂[H_{2-x}(P_{1-x},S_x)O₄] (x ~ 0.5) superprotonic conductor, ScMnO₃ crystalline solids with liquid-mix disorder, 141, 78 139. 373 SrNb₂S₅ and SrTa₂S₅, 135, 325 diglycine hydrogen selenite crystals, 140, 71 effect of supported Na⁺ on ZrO₂ texture properties, 138, 41 TaReSe₄ layered crystals, structure, defect structure, microstructure, and rotation twins, 135, 235 Mg₃N₂, 137, 33 zinc phenylphosphonate thermal behavior and structural determination monoglycine-selenious acid crystals, 140, 71 NbO(O₂)_{0.5}PO₄·2H₂O, 137, 289 of \gamma-Zn₂P₂O₇, 140, 62 Powder X-ray thermodiffractometry order-disorder phase transition in bicyclononanone, 136, 16 NbO(O₂)_{0.5}PO₄·2H₂O, 137, 289 oxygen release behavior of CeZrO₄ powders and appearance of com- Praseodymium pounds \kappa and T*, 138, 47 Er₅O(OPrⁱ)₁₃, synthesis and properties, 141, 168 SnO₂ nanocrystals, structural study, 135, 78 KPr^{III}M_2^{IV}F_{12} (M^{IV} = Tb, Zr, Hf), synthesis and crystal structure, 139, 248 Ramsdellites La_{2-x}Pr_xNiO_{4+\delta}, magnetic properties, 138, 260 LiTi₂O₄ and Li₂Ti₃O₇, linked in solid solutions, X-ray and neutron Pr⁴⁺, doped in BaSnO₃, Ba₂SnO₄, and Ba₃Sn₂O₇, EPR study, 138, 329 diffraction studies, 141, 365 Pr(ClO₄)₃, crystalline and molecular structures, 139, 259 Rhenium ``` $Mn(ReO_4)_2 \cdot 2H_2O$, crystal structure, 138, 232 in Pr-doped zircon, valence and localization, 139, 412 Pb₂Re₂O_{7-x} pyrochlores, synthesis and structure, **138**, 220 ReO₃, intersecting tunnel structure related to, tungstoniobium monophosphates with, **136**, 305 $M(ReO_4)_2$ (M = Mn,Co,Ni,Zn) anhydrous perrhenates, crystal structure, 138, 232 SbRe₂O₆ with Re–Re bond, preparation, crystal structure, and electrical resistivity, **138**, 245 TaReSe₄ layered crystals, structure, defect structure, microstructure, and rotation twins, **135**, 235 #### Rheology aciculate ultrafine α -FeOOH particles under alkaline conditions, 141, 94 Rhodium Sr₃MRhO₆ with K₄CdCl₆ structure M = Sm,Eu,Tb,Dy,Ho,Er,Yb, synthesis, characterization, and magnetic properties, 139, 79 M = Y,Sc,In, synthesis and characterization, **139**, 416 ## Rietveld refinement $Al_{13}O_4(OH)_{24}(H_2O)_{12}^{7+}$ cluster encapsulated into MoS₂ and WS₂, 139, $RBi_2O_4NO_3$ (R = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), 139, 321 $Ln(ClO_4)_3$ (Ln = La, Ce, Pr, Sm, Eu, Ho, Er, Tm, Lu), 139, 259 DySr₂Cu_{2.7}Cr_{0.3}O_{7.2} and DySr₂Cu_{2.7}Mo_{0.3}O_{7.2}, **141**, 522 $Eu_{2-x}Sr_xNiO_{4+\delta}$, **141**, 99 $\alpha\text{-Fe}_2O_3$ doped with Mg²+, 140, 428 $Ga_{3-x}In_{5+x}Sn_2O_{16}$, 140, 242 and *in situ* anomalous powder diffraction, in measurement of cation distribution in Fe_{2.5}Ti_{0.25}O₄, **141**, 105 $(La_{0.1}Ca_{0.9})(Mn_{1-x}Ge_x)O_3$, **140**, 431 $La_{1-x}Ca_xMnO_3$, **140**, 320 LiNi(AsO₄), **141**, 508 $LiTi_2O_4$ and $Li_2Ti_3O_7$ ramsdellites linked in solid solutions, X-ray and neutron studies, **141**, 365 $Mg_5Nb_4O_{15}$ and $Mg_5Ta_4O_{15}$, analysis of neutron powder diffraction data, 137, 359 Mn₄Ta₂O₉, 137, 276 Nd₄Cu₂O₇, cooperatively distorted T' type structure, **136**, 137 NH₄NbWO₆ defect pyrochlore, 141, 537 nonstoichiometric Li-pseudobrookite(ss) in Li₂O-Fe₂O₃-TiO₂ system, **141**, 221 Sr₃MRhO₆, with K₄CdCl₆ structure-type M = Sm,Eu,Tb,Dy,Ho,Er,Yb, 139, 79 M = Y,Sc,In, 139, 416 Y₄Al₂O₉ at high temperature, **141**, 466 Zr_3Te and Zr_5Te_4 , 139, 213 ## Rotation twins in TaReSe₄ layered crystals, electron microscopic and X-ray diffraction analysis, **135**, 235 ## Rubidium Rb₂CdCl₄, X-ray diffraction and electronic structure, 140, 371 RbCe₃Te₈, flat Te nets of, site occupancy wave and infinite zigzag $(\text{Te}_{2}^{2-})_{n}$ chains in, 135, 111 RbCl/TmCl₃, phase diagrams and thermodynamics, 135, 127 Rb₂MoO₂As₂O₇, preparation and crystal structure, **141**, 500 RbMoOPO₄Cl, synthesis and layer structure, 137, 214 Rb₁₂Nb₆Se₃₅ polymer with infinite anionic chains built up by Nb₂Se₁₁ units containing Se₃⁴⁻ fragment, synthesis, structure, and properties, **140.** 97 RbNb₄WO₉(PO₄)₃, synthesis and intersecting tunnel structure related to ReO₃, **136**, 305 Rb₂MP₂Se₆ (M = Pd,Zn,Cd,Hg), synthesis, structure, and optical and thermal properties. **138**, 321 Rb_3MS_4 (M = Nb,Ta), synthesis and crystal structure, 139, 404 Rb₃Sc₂(AsO₄)₃, synthesis and structure determination by synchrotron single crystal methods, **139**, 299 Rb₃Sn(PSe₅)(P₂Se₆), one-dimensional compounds, synthesis, structure, and optical and thermal properties, **136**, 79 $Rb_2Sn_4S_9$ layered compounds, flux synthesis and characterization, 141, 17 Ruddlesden-Popper phases $Sr_2LnMn_2O_7$ (Ln = Y,La,Nd,Eu,Ho), HRTEM study, 138, 135 Sr₃Mn₂O₇, crystal and magnetic structures, letter to editor, **141**, 599 Ruthenium $\text{Ca}_3\text{Co}_{1+x}\text{Ru}_{1-x}\text{O}_6$, one-dimensional oxides, synthesis and magnetic properties, **140**, 14 A₂Ru₂O_{7-y} pyrochlores, structural and electronic properties, **136**, 269 Ru-Y system, calorimetric study with phase diagram optimization, **138**, 302 $Tl_2Ru_2O_{7-\delta}$ pyrochlore, high-pressure synthesis, crystal structure, and metal–semiconductor transitions, **140**, 182 $[(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(RuO_2)_x \ (0 \le x \le 0.1)$ ceramics, preparation and electrical characterization, **141**, 282 S ## Samarium $KSm^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf$), synthesis and crystal structure, 139, 248 NaSmTiO₄ layered perovskites, magnetic properties, 138, 342 Sm³⁺, doping of Na₂SO₄, effect on electrical conductivity, **138**, 369 SmAlO₃ perovskite, stability, calorimetric study, 141, 424 $SmBa_2Fe_3O_{8+x}$ phases, powder neutron and X-ray diffraction studies, 136, 21 SmBi₂O₄NO₃, preparation and crystal structure, 139, 321 Sm₃(BO₃)₂F₃, ab initio structure determination, 139, 52 Sm(ClO₄)₃, crystalline and molecular structures, **139**, 259 Sm₃Ga₅O₁₂ garnet, stability, calorimetric study, **141**, 424 Sm₃NbSe₃O₄, synthesis and structure, 137, 122 Sm₃Si₂C₂, magnetic and electrical properties, 138, 201 $SmTe_{2-x}$ semiconductor, superstructure, **140**, 300 $Sm_{1-x}TiO_3$ (x = 0.03,0.05,0.10), magnetic properties, **141**, 262 Sr₃SmRhO₆, synthesis, characterization, and magnetic properties, **139**, 79 ## Scandium BaScO₂F perovskite, synthesis and structure, **139**, 422 Na₃ScF₆, single-crystal high-pressure studies, 135, 116 $Rb_3Sc_2(AsO_4)_3$, synthesis and structure determination by synchrotron single crystal methods, **139**, 299 ScAl₃C₃, crystal structure, **140**, 396 ScMnO₃ crystalline solids, liquid-mix disorder in, 141, 78 ScNiP, Sc–Sc bonding in, 137, 218 Sc₂(WO₄)₃, negative thermal expansion, 137, 148 Sr₃ScRhO₆ with K₄CdCl₆ structure, synthesis and characterization, 139, substitution for Mn in Eu₃Ba₂Mn₂Cu₂O₁₂, effects on electronic and magnetic properties, **141**, 546 ## Selenium Ag₂Se chalcogenides, sonochemical synthesis, 138, 131 $Cr(SeO_2OH)(Se_2O_5)$, modifications of, crystal structures and electronic absorption spectra, 135, 70 Cr₂Sn₃Se₇, spin glass-like behavior, 137, 249 Cs_2PdSe_8 , synthesis and open framework structure with double helical assemblies of $[Pd(Se_4)_2]^{2-}$, letter to editor, **140**, 149 Cs₃(HSeO₄)₂(H₂PO₄), synthesis and crystal structure, **141**, 317 Cs₅(HSeO₄)₃(H₂PO₄)₂, synthesis and crystal structure, **141**, 317 Cs₄(SeO₄)(HSeO₄)₂(H₃PO₄), synthesis and crystal structure, 141, 317 αCu₂Se and Cu₃Se₂ chalcogenides, sonochemical synthesis, 138, 131 diglycine hydrogen selenite, crystal structure, vibrational spectra, and DSC measurement, **140**, 71 GeSe₂, pressure-induced amorphization, 141, 248 K₄In₂(PSe₅)₂(P₂Se₆), one-dimensional compounds, synthesis, structure, and optical and thermal properties, 136, 79 La_xMo₆Se₈ Chevrel-phase superconductor correlation of $T_{\rm c}$ and interatomic distances, 136, 151 physical and superconducting properties, 136, 160 monoglycine-selenious acid crystals, vibrational spectra and DSC measurement, 140, 71 Na_2SeO_3 , synthesis in vibrational mill by mechanochemical activation of $(SeO_2 + Na_2CO_3)$ mixture, 135, 256 $A_2MP_2Se_6$ (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), synthesis, structure, and optical and thermal properties, 138, 321 Rb₁₂Nb₆Se₃₅ polymer with infinite anionic chains built up by Nb₂Se₁₁ units containing Se₃⁴⁻ fragment, synthesis, structure, and properties, **140.** 97 Rb₃Sn(PSe₅)(P₂Se₆), one-dimensional compounds, synthesis, structure, and optical and thermal properties, **136**, 79 (SeO₂ + Na₂CO₃) mixture, mechanochemical activation for synthesis of Na₂SeO₃ in vibrational mill, **135**, 256 Sm₃NbSe₃O₄, synthesis and structure, 137, 122 $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O,$ synthesis and crystal structure, 140, 134 TaReSe₄ layered crystals, structure, defect structure, microstructure, and rotation twins, **135**, 235 Semiconductors Ag_{0.7}Mo₃O₇(PO₄) bronze built up from ReO₃-type slabs, 140, 128 KBi₃S₅, open-framework, preparation of topotactic derivatives of, letter to editor, **136**, 328 $SmTe_{2-x}$, superstructure, **140**, 300 Semiconductor-to-metal transition $Sr_{1-x}La_xMo_5O_8 \ (0 \le x \le 1), 138, 7$ Shock synthesis $REBa_2Cu_3O_y$ (RE = Y,Eu,La), effect of ionic radius difference of RE^{3+} and Ba^{2+} , 136, 74 Silicate heterostructures **136.** 51 layered, staging of organic and inorganic gallery cations in, **139**, 281 Ce–Al–(Si,Ge) systems, phase equilibria and physical properties, **137**, 191 CuAl₂Si₂O₇(F,OH)₂, hydrothermal synthesis, crystal structure, and properties, **141**, 527 MgO-SiO₂ systems, mechanochemical reactions, role of water, **138**, 169 Na-Fe/SiO₂ catalysts, surface coordinate geometry: formation of tetrahedral/octahedral site on silica surface, **137**, 325 $Nd_6Ni_{2-x}Si_3$ and $Nd_{42}Ni_{22-x}Si_{31}$, crystal structure and chemistry, 137, 302 R₃Si₂C₂ (R = Y,La-Nd,Sm,Gd-Tm), magnetic and electrical properties, 138, 201 M_2 Si intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218 Si_x(Ta,Nb)Te₂, structural and microstructural aspects, **139**, 105 Silver admixtures in Sb₂Te₃ and Bi₂Te₃ single crystals, behavior of, **140**, 29 AgI:Ag₂MoO₄ system, phase diagram: devitrification and metastability, **140**, 91 Ag_{0.7}Mo₃O₇(PO₄) bronze built up from ReO₃-type slabs, synthesis, structure, and properties, **140**, 128 $AgXPO_4$ (X = Be,Zn), crystal structures and crystal chemistry, **141**, 177 Ag_2Se chalcogenides, sonochemical synthesis, **138**, 131 GdAgGe antiferromagnet, structure, bonding, magnetic susceptibility, and ¹⁵⁵Gd Mössbauer spectroscopy, **141**, 352 ion distribution and flow in one-dimensional ionic conductor [(CH₃)₂N(CH₂CH₂)₂O]Ag₄I₅, cooperative disorder model, **140**, 1 metal formation from hemioxides by low-energy mechanochemistry, V-Ag catalysts, temperature-programmed reduction, 141, 186 Site occupancey wave in flat Te nets of ALn₃Te₈, 135, 111 Sodiun Cs/Na ion exchange on hydrated molybdenum bronze and synthesis of cesium molybdenum bronze at low temperature, 137, 12 H₂O-Na₂SO₄-Na₂HPO₄ system, isotherms, conductivity measurements, 140, 316 $(K_xNa_{1-x})MgF_3$ perovskites, crystal chemistry and phase transitions in P-T-X space, **141**, 121 $La_{1-x-y}Na_xMnO_{3-\delta}$, synthesis, structure, and properties, 137, 19 Na₅[B₂P₃O₁₃], hydrothermal and microwave-assisted synthesis, letter to editor, **140**, 154 Na₃Fe₂(AsO₄)₃, cationic substitutions, associated transition from garnet to alluaudite structure, 137, 112 NaFe_{3.67}(PO₄)₃, hydrothermal synthesis, structure, and characterization, **139**, 152 Na-Fe/SiO₂ catalysts, surface coordinate geometry: formation of tetrahedral/octahedral site on silica surface, 137, 325 $Na_{x-\delta}Fe_xTi_{2-x}O_4$ ($x=0.875, 0 \le \delta \le 0.40$), conductivity, **137**, 168 $Na_2Ge_4O_9$, structure, **140**, 175 $Na_xK_{1-x}Bi_3S_5$, preparation, letter to editor, **136**, 328 NaLa₉(GeO₄)₆O₂ apatite, single-crystal growth and structure determination, **139**, 304 $Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3$ perovskite series, structural study, 138, 307 NaMoO₃F, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd REDOR NMR study, **140**, 285 NaNi(AsO₄), spectroscopic and magnetic properties, 141, 508 NaNO₃, dispersion on ZrO₂: effect of supported Na⁺ on ZrO₂ texture properties, **138**, 41 NaPb₄(VO₄)₃ with anion-deficient apatite structure, **141**, 373 Na₄P₂S₆·6H₂O, single-crystal structure determination, **141**, 274 Na_3MS_4 (M = Nb,Ta), synthesis and crystal structure, 139, 404 Na₃ScF₆, single-crystal high-pressure studies, **135**, 116 Na₂SeO₃, synthesis in vibrational mill by mechanochemical activation of (SeO₂ + Na₂CO₃) mixture, **135**, 256 Na₂SO₄, electrical conductivity, effect of aliovalent cation doping, 138, 183 NaLnTiO₄ (Ln = Sm,Eu,Gd) layered perovskites, magnetic properties, 138, 342 NaTl, LiIn and LiCd phases resembling, pressure-induced transformation into β -brass-type alloys, 137, 104 (SeO₂ + Na₂CO₃) mixture, mechanochemical activation for synthesis of Na₂SeO₃ in vibrational mill, **135**, 256 Soft chemistry CuInP₂S₆ and Sn₂P₂S₆ forms prepared by, 141, 290 Fe_{2.5}Ti_{0.5}O₄ nanocrystal synthesis, **139**, 66 Sol-gel synthesis Al₂O₃-TiO₂ nanocrystals, 141, 70 Ln_2 Ba₂Cu₂Ti₂O_{11- δ} (Ln = La,Nd,Eu,Tb), and simultaneous oxidation, **138.** 141 LaGaO₃ perovskite-type oxide-ion conductor doped with Sr and Mg, 136, 274 TiO₂ derived from, Cu²⁺ ions in, TPR, ESR, and XPS study, 138, 1 ultrafine rare earth molybdenum complex oxide particles, 140, 354 ZrO₂ prepared by, tetragonal nanophase stabilization, **135**, 28 $[(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(RuO_2)_x (0 \le x \le 0.1)$ ceramics, **141**, 282 $\rm Zr_x Ti_{1-x}O_2$ (x=0.22,0.39,0.60) prepared by, thermal decomposition and phase analysis, **139**, 225 Solid solutions BaHf_{1-x}Zr_xN₂, synthesis, structure, and magnetic properties, **137**, 62 6H-Ba(Ti,Fe³⁺,Fe⁴⁺)O_{3- δ}, structural analysis, **135**, 312 Bi(Bi_{12-x}Te_xO₁₄)Mo_{4-x}V_{1+x}O₂₀ (0 \le x \le 2.5), synthesis and structural evolution, **139**, 185 (1 - x)Bi₂O₃·xCaO, γ -type, short-range order in, electron diffraction study and relationship to low-temperature Ca₄Bi₆O₁₃, 135, 201 CaO-MnO solid solutions, energies of mixing, ab initio Hartree-Fock study. 137, 261 LiNbO₃ and LiTaO₃ with Mn²⁺, preparation and characterization, **140**, 168 LiTi₂O₄ and Li₂Ti₃O₇ ramsdellites linked in, X-ray and neutron diffraction studies. 141, 365 MgO-MnO solid solutions, energies of mixing, *ab initio* Hartree-Fock study, **137**, 261 MnO–NiO solid solutions, energies of mixing, ab initio Hartree–Fock study, 137, 261 Ni_{1+m}Sn_{1-x}P_x, B8-type, Sn/P and interstitial Ni ordering in, electron diffraction study, **136**, 125 $Pb_2MgW_xTe_{(1-x)}O_6$, dielectric measurements, DSC, structure, and phase diagram, **139**, 332 $Sr_{2-x}Pb_x(VO)(VO_4)_2$, structural, IR, and magnetic studies, **140**, 417 Solvothermal synthesis $\text{Li}_{1-x}\text{Fe}_{5+x}\text{O}_8$ obtained by, magnetic properties, **141**, 554 MoS₂ nanocrystals from MoO₃ and elemental sulfur, 141, 270 Sonochemical synthesis copper and silver chalcogenides, 138, 131 Sorption Cs on Cu^{II}Fe^{II}(CN)₆ and Cu^{II}₃[Fe^{III}(CN)₆]₂, mechanisms, relationship to crystal structure, **141**, 475 Sphalerite structure ordering of metal atoms in, 138, 334 Spinels $MeAl_2O_4$ (Me = Ni,Co,Cu,Fe), formation from α- and γ- Al_2O_3 -supported oxides, 135, 59 Co_xCu_{1-x}Fe₂O₄ powders, cation migration and coercivity in, **141**, 56 Fe₂Mo_{1-x}Ti_xO₄, electrical resistivity and thermoelectric power measurements, **140**, 56 Li_{0.8}[Co₂]O₄, structural features, 140, 116 Li-Mn-O oxides oxygen nonstoichiometry, powder neutron diffraction study, **135**, 132 synthesis and structure, **139**, 290 mechanosynthesized zinc ferrite, structural disorder in, 135, 52 $Ni_y(Cr_{2-2x}In_{2x})_{1-y}S_{3-y}$, decomposition and X-ray powder diffraction, 136, 193 precipitation in Al-doped Ni_{1-x}O, 140, 38 Zn-Mn spinel ferrites, nanocrystals obtained by high-energy ball milling, chemical homogeneity, **141**, 10 Spin-glass behavior compounds with YbFe₂O₄-type structure, **140**, 337 Cr₂Sn₃Se₇, 137, 249 Spin-lattice relaxation times order-disorder phase transition in bicyclononanone, 136, 16 Spray pyrolysis synthesis of doped and undoped nanopowders of tetragonal polycrystalline zirconia, **141**, 191 Stability AgI:Ag₂MoO₄ system metastability, **140**, 91 $Bi_2Sr_2Co_{6+\delta}$ ceramic, **136**, 1 lanthanide aluminum oxide and lanthanide gallium oxide perovskites and garnets, calorimetric study, **141**, 424 MO_2 (M = Ba,Sr,Ca,Mg,Be), *ab initio* quantum mechanical study, **140**, 103 Tl₂(MoO₃)₃PO₃CH₃, **138**, 365 Stainless steel PZT thin film preparation on, with electrochemical reduction, **136**, 293 Stereochemistry Pb^{2+} 6s² lone pair effect in $Sr_{2-x}Pb_x(VO)(VO_4)_2$ solid solutions, **140**, 417 Pb^{II} lone pair in Pb^{II}Sn^{IV}(PO₄)₂, 137, 283 Sb(III) lone pair in [(CH $_3$ NH $_3$)_{1.03}K $_{2.97}$]Sb $_{12}$ S $_{20} \cdot 1.34$ H $_2$ O, **140**, 387 Strontium $Ba_5Ta_4O_{15}$ –Sr ZrO_3 system, hexagonal perovskites in, synthesis and structural study, 141, 492 Bi₂Sr₂CaCu₂O₈, transformation to Bi₂Sr₂Ca₂Cu₃O₁₀, 139, 1 Bi₂Sr₂CaCu₂O_{8+δ}, heavily Pb-substituted single crystals, two-phase microstructures generating efficient pinning centers, **138**, 98 $Bi_2Sr_2Co_{6+\delta}$ ceramic, stability, oxygen nonstoichiometry, and transformations, 136, 1 $Bi_{3.6}Sr_{12.4}Mn_8O_{28+\delta}$, with tubular structure, synthesis and crystal chemistry, 138, 278 (Ca_{1-x}Sr_x)MnO₃, Mn–O–Mn angles in, relationship to electrical properties, **137**, 82 $Ca_{1-x}Sr_xNbO_3$ (0 $\leq x \leq$ 1) perovskite-type phases, synthesis, structure, and electron microscopy, **141**, 514 CaTiO₃/SrTiO₃ system, structures in, 139, 238 $DySr_2Cu_{2.7}Cr_{0.3}O_{7.2} \ and \ DySr_2Cu_{2.7}Mo_{0.3}O_{7.2}, \ crystal \ structures, \\ \textbf{141, } 522$ $\text{Eu}_{2-x}\text{Sr}_x\text{NiO}_{4+\delta}$, preparation, crystal structure, and reducibility, **141**, 99 IBi₂Sr₂CaCu₂O_y, superconducting intercalates, charge transfer–T_c relationship. 138, 66 LaGaO₃ perovskite-type oxide-ion conductor doped with, wet chemical synthesis, **136**, 274 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$ (0.5 $\leq x \leq$ 0.9) perovskite, synthesis and properties, 139, 388 $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4$ (0.25 $\leq x \leq$ 1.10), polaronic conduction below room temperature, **139**, 176 $La_{1-x}Sr_xCrO_3$ ($x=0\sim0.25$) perovskites, magnetic and neutron diffraction study, **141**, 404 La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85}, high-temperature powder neutron diffraction study, 139, 135 $La_{1-x}Sr_xMnO_{3.00}$, oxidation kinetics, *in situ* powder diffraction studies, **141**, 235 LiI₃Bi₂Sr₂CaCu₂O₈ layered cuprate, synthesis and characterization, 141, 452 $Nd_{0.5}Sr_{0.5}MnO_3,$ charge-ordered states, distinction based on chemical melting, $137,\ 365$ $Nd_{2-x}Sr_xNiO_y$, hole-doped and reduced compounds, nickel oxidation state and magnetic properties, **140**, 278 Sr²⁺, doping of Na₂SO₄, effect on electrical conductivity, 138, 369 Sr_2BN_2X (X = F,Cl), compounds with isolated BN_2^{3-} units, 135, 194 SrCO₃, thermal decomposition, modeling based on lattice energy changes, 137, 332 Sr₃₉Co₁₂N₃₁, synthesis, structure, and magnetic properties, 141, 1 $Sr_{2-x}A_xCuO_2F_{2+\delta}$ (A=Ca,Ba) superconductors, synthetic pathways and associated structural rearrangements, 135, 17 $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$ mixed-conducting materials, structure and property relationships, **141**, 576 $Sr_4A'Ir_2O_9$ (A' = Cu,Zn), commensurate and incommensurate phases, 136, 103 $Sr_{1-x}La_xMo_5O_8$ (0 $\leq x \leq$ 1), synthesis and metallic properties, 138, 7 $Ln_{1-x}Sr_xMnO_3$ (Ln = La,Pr,Nd), charge-ordered, effect of internal pressure, letter to editor, 135, 169 $Sr_2LnMn_2O_7$ (Ln = Y,La,Nd,Eu,Ho), Ruddlesden-Popper phases, HRTEM study, 138, 135 Sr₃Mn₂O₇, crystal and magnetic structures, letter to editor, 141, 599 Sr₂NbN₃, synthesis and structural characterization, **138**, 297 $\rm Sr_4Nb_4O_{14}\text{--}Sr_5Nb_4O_{15}\text{--}SrTiO_3}$ system, perovskite-related phases in, 135, 260 SrNb₂S₅, metallic characteristics, 135, 325 Sr₄Ni₃O₉, hexagonal perovskites with one-dimensional structures related to, electron microscopy, **135**, 1 SrO₂ structure and stability, ab initio quantum mechanical study, 140, 103 thermal decomposition, modeling based on lattice energy changes, 137, 346 Sr_{2-x}Pb_x(VO)(VO₄)₂ solid solutions, structural, IR, and magnetic studies, **140**, 417 Sr₃MRhO₆ with K₄CdCl₆ structure M = Sm,Eu,Tb,Dy,Ho,Er,Yb, synthesis, characterization, and magnetic properties, 139, 79 M = Y,Sc,In, synthesis and characterization, 139, 416 $Sr_{10}[Sb_7O_{13}(OH)]_2[SbSe_3]_2Se \cdot 2H_2O$, synthesis and crystal structure, 140, 134 SrTa₂S₅, superconductivity, **135**, 325 Structure, see also Crystal structure AB_2 crystalline systems, candidates for, determination, 136, 233 activated sintered boron carbide-based materials, 137, 1 alkyltrimethylammonium chromates, 139, 310 $BaCo_{1-x}Cu_xS_{2-y}$ layered sulfide, 138, 111 $BaHf_{1-x}Zr_xN_2$ solid solution, 137, 62 6H-Ba(Ti,Fe³⁺,Fe⁴⁺)O_{3- δ} solid solution, **135**, 312 Bi₂O₃ systems with Nb₂O₅, Ta₂O₅, MoO₃, or WO₃, review, 137, 42 ${\rm Bi}_2{\rm S}_3$ thin films prepared by thermal evaporation and chemical bath deposition, 136, 167 Bi₂Sr₂CaCu₂O_{8+δ}, heavily Pb-substituted single crystals, two-phase microstructures generating efficient pinning centers, 138, 98 Bi_{1.74}Ti₂O_{6.62} pyrochlore, **136**, 63 C₆₀, high-pressure polymeric phases, packing moels, **141**, 164 calcium-lead hydroxyapatites, 135, 86 $CaVO_{3-\delta}$ oxygen-deficient phases, 135, 36 $(Co,Ni,Cu)_{1+x}(Ge,Sn)$ B8-type phases, computer simulation of modulated structures, **135**, 269 cristobalite-related oxides, review, 141, 29 Cs₂YbNb₆Br₁₈, atomic structure at twin interface, 141, 140 Cu₂Th₄(MoO₄)₉, 136, 199 hexagonal perovskites, electron microscopy, 135, 1 hydrotalcite-derived MgAlO oxides calcined at varying temperatures, 137, 295 In-Bi₂S₃ annealed thin films, 138, 290 $InMO_3(ZnO)_m (M = In,Ga; m = integer)$, modulated structure described by four-dimensional superspace group, **139**, 347 $A_2 \operatorname{Ir}_2 \operatorname{O}_{7-y}$ pyrochlores, **136**, 269 LaBa₂Fe₃O_{8+w} (-0.20 < w < 0.83), cubic perovskite-type phase, ⁵⁷Fe Mössbauer spectroscopy, **138**, 87 $La_{2/3}Ca_{1/3}Mn_{1-x}In_xO_3$ perovskites, **138**, 226 $\text{La}_2\text{Li}_{1/2}M_{1/2}\text{O}_4$ (M(III) = Co,Ni,Cu), orthorhombic variant of K_2NiF_4 structure, 138, 18 $\text{La}_{1-x-y}A_x\text{MnO}_{3-\delta}$ (A = Na,K), 137, 19 $LaNi_{0.95}M_{0.05}O_3$ (M = Mo, W, Sb, Ti, Cu, Zn) perovskites, 136, 313 $\text{Li}_3\text{Fe}_2(X\text{O}_4)_3 (X = \text{P,As}), 135, 228$ Li-inserted In₁₆Fe₈S₃₂, **138**, 193 LiMn₂O₄, local structure, X-ray absorption fine structure study, 141, 294 $\text{Li}_x \text{Ni}_{0.8} \text{Co}_{0.2} \text{O}_2$ system, 136, 8 magnetic RPtAl (R = Ce, Pr, Nd), 140, 233 Sr₃Mn₂O₇, letter to editor, **141**, 599 mechanosynthesized zinc ferrite, disorder in, 135, 52 Mo₂O₅(OCH₃)₂ and Mo₂O₅(OCH₃)₂·2CH₃OH, insights from reaction chemistry and diffraction studies, **136**, 247 Müller-type, related compound $[NH_3(CH_2)_8NH_3]_3[V_{15}O_{36}(Cl)]$ $(NH_3)_6(H_2O)_3$, synthesis, 136, 298 M_2X intermetallics, nonmetal insertion in h.c.-like metallic distribution, 135, 218 [NH₃(CH₂)₄NH₃][Ga(PO₄)(PO₃OH)], 136, 227 Ni-Fe alloy/magnetite composites, microstructure, 135, 210 nonstoichiometric Li-pseudobrookite(ss) in Li₂O-Fe₂O₃-TiO₂ system, **141**, 221 $Pb_2MgW_xTe_{(1-x)}O_6$ solid solution, **139**, 332 $A_2 Ru_2 O_{7-\nu}$ pyrochlores, **136**, 269 $Si_x(Ta,Nb)Te_2$, 139, 105 $SmTe_{2-x}$ semiconductor superstructure, 140, 300 Sn⁴⁺-doped indium oxide and In₄Sn₃O₁₂, **135**, 140 $Sr_{2-x}A_xCuO_2F_{2+\delta}$ (A=Ca,Ba) superconductors, rearrangements associated with synthetic pathways, 135, 17 $Sr_4(Fe_{1-x}Co_x)_6O_{13\pm\delta}$ mixed-conducting materials, 141, 576 Sr₂LnMn₂O₇ (Ln = Y,La,Nd,Eu,Ho), microstructure of Ruddlesden–Popper phases, HRTEM study, 138, 135 TaReSe₄ layered crystals, microstructural analysis by electron microscopy and X-ray diffraction, **135**, 235 tubular, Bi_{3.6}Sr_{12.4}Mn₈O_{28+ δ} with, synthesis and crystal chemistry, **138**, YB₅₆ with YB₆₆ structure, Y atoms in, digital HREM imaging, **135**, 182 YbFe₂O₄-type, compounds with, frustrated magnetism and spin-glass behavior, **140**, 337 Sulfu AuTa₅S, synthesis and structure, 139, 45 BaCo_{1-x}Cu_xS_{2-y} layered sulfide, synthesis, structure, and properties, 138, 111 $Ba_6Cu_{12}Fe_{13}S_{27}$, synthesis and crystal structure, **128**, 62; comment, **137**, 353; reply, **137**, 354 Bi₂S₃ thin films prepared by thermal evaporation and chemical bath deposition, properties, **136**, 167 CaS:Eu,La, Eu valencies in, 138, 149 CaSO₄·2H₂O, dehydration, Controlled transformation Rate Thermal Analysis, **139**, 37 [(CH $_3$ NH $_3$)1 $_1.03$ K $_2.97$]Sb $_12$ S $_20\cdot 1.34$ H $_2$ O, hydrothermal synthesis and crystal structure, **140**, 387 Co_{0.33}[Ta₂S₂C], combustion synthesis, 138, 250 Cs₅(HSO₄)₃(H₂PO₄)₂, solid acid with unique hydrogen bond network, X-ray diffraction study, **140**, 251 β -Cs₃(HSO₄)₂[H_{2-x}(P_{1-x}S_x)O₄] ($x \sim 0.5$) superprotonic conductor, structure and vibrational spectrum, **139**, 373 CsLiSO₄, ABW-type, phase transition in, symmetry analysis and atomic distortions, **138**, 267 CuInP₂S₆, soft-chemistry forms, **141**, 290 Cu_{1.96}S chalcogenides, sonochemical synthesis, **138**, 131 Cu₂SnS₃, structure refinement, **139**, 144 Cu₄Sn₇S₁₆, synthesis, electrical conductivity, and crystal structure, **139**, 144 Cu_{0.6}[Ta₂S₂C], combustion synthesis, **138**, 250 Fe-S materials, mechanochemical synthesis, 138, 114 Fe_{0.33}[Ta₂S₂C], combustion synthesis, **138**, 250 Hg_xTiS₂, host-layer restacking in, mechanism, **141**, 330 H₂O-Na₂SO₄-Na₂HPO₄ system, isotherms, conductivity measurements, 140, 316 In-Bi₂S₃, annealed thin films, structural and electrical properties, **138**, 290 In₁₆Fe₈S₃₂, lithium-inserted, structure and electrochemical behavior, **138**, 193 In₂S₃ thin films, study by diffraction of synchrotron radiation, 137, 6 KBi₃S₅, open-framework semiconductors, preparation of topotactic derivatives of, letter to editor, **136**, 328 $LaMS_3$ (M = Ti,V,Cr), high-pressure synthesis, 139, 233 $La_5Ti_6S_3Cl_3O_{15}$, synthesis and structural characterization, 139, 220 La₈Ti₁₀S₂₄O₄, synthesis and crystal structure, **136**, 46 Al₁₃O₄(OH)₂₄(H₂O)⁷⁺₁₂ encapsulation into, and Rietveld structural characterization, **139**, 22 Symmetry studies phase transition in ABW-type CsLiSO₄, 138, 267 symmetry reduction in Lewisite, 141, 562 nanocrystals, solvothermal synthesis from MoO₃ and elemental sul-Synchrotron radiation fur, **141**, 270 in determination of Rb₃Sc₂(AsO₄)₃ structure, **139**, 299 Na₄P₂S₆·6H₂O, single-crystal structure determination, **141**, 274 Synthesis, see also Hydrothermal synthesis; Mechanochemical synthesis; Na₂SO₄, electrical conductivity, effect of aliovalent cation doping, 138, Sol-gel synthesis Ag_{0.7}Mo₃O₇(PO₄) bronze built up from ReO₃-type slabs, 140, 128 $Ni_{\nu}(Cr_{2-2x}In_{2x})_{1-\nu}S_{3-\nu}$ spinel, decomposition and X-ray powder dif-AuTa₅S, 139, 45 fraction, **136**, 193 Ba₃AlO₄H, 141, 570 Ni_{0.25}[Ta₂S₂C], combustion synthesis, **138**, 250 $BaCo_{1-x}Cu_xS_{2-y}$ layered sulfide, 138, 111 (PbS)_{1.18}(TiS₂)₂, nanocomposites with poly(ethylene oxide), synthesis Ba₆Cu₁₂Fe₁₃S₂₇, **128**, 62; comment, **137**, 353; reply, **137**, 354 and characterization, 141, 323 $REBa_2Cu_3O_v$ (RE = Y,Eu,La), shock synthesis, effect of ionic radius difference of RE^{3+} and Ba^{2+} , 136, 74 A_3MS_4 (A = Na,Rb; M = Nb,Ta), synthesis and crystal structure, 139, BaHfN₂, 137, 62 Sn₂P₂S₆, soft-chemistry forms, **141**, 290 $BaHf_{1-x}Zr_xN_2$ solid solution, 137, 62 A_2 Sn₄S₉ (A = K,Rb,Cs) layered compounds, flux synthesis and charac-Ba₃Li₂Cl₂(MoO)₄(PO₄)₆ with intersecting tunnel structure, **141**, 587 terization, 141, 17 Ba-Pt-O system ($\frac{4}{3} < Y = \text{Ba/Pt} < \frac{5}{2}$), 140, 194 SrNb₂S₅, metallic characteristics, **135**, 325 BaScO₂F perovskite, 139, 422 SrTa₂S₅, superconductivity, **135**, 325 $Ba_5Ta_4O_{15}-MZrO_3$ (M = Ba,Sr) hexagonal perovskites, 141, 492 Ta₃SBr₇, crystal structure, 140, 226 BaThN₂, 138, 297 transition metal carbosulfides, combustion synthesis, 138, 250 Bi(Bi_{12-x}Te_xO₁₄)Mo_{4-x}V_{1+x}O₂₀ (0 $\leq x \leq$ 2.5) solid solution, **139**, 185 WS₂, Al₁₃O₄(OH)₂₄(H₂O)⁷⁺₁₂ encapsulation into, and Rietveld structural BiCa₂VO₆, **137**, 143 characterization, 139, 22 BiCu₂VO₆, 141, 149 Bi_{6.67}(PO₄)₄O₄, **139**, 274 [Zn(4,4'-bipy)(H₂O)(SO₄)] · 0.5H₂O coordination polymer with interwoven double-layer structure, synthesis and characterization, 138, 361 $Bi_{3.6}Sr_{12.4}Mn_8O_{28+\delta}$ with tubular structure, 138, 278 ZnS, sphalerite and wurtzite structures, ordering of metal atoms in, 138, Bi_{1.74}Ti₂O_{6.62} pyrochlore, **136**, 63 334 $Bi_9(V_{1-x}P_x)_2ClO_{18}$ series $(0 \le x \le 1)$, 136, 34 Sulfuric acid M_2 BN₂X (M = Ca,Sr; X = F,Cl), compounds with isolated BN₂³ units, nondoped sol-gel ZrO2 prepared with, tetragonal nanophase stabiliza-135, 194 tion, 135, 28 Ca_xCoO_2 (0.26 $\leq x \leq$ 0.50), **141**, 385 Superconductivity $Ca_3Co_{1+x}B_{1-x}O_6$ (B = Ir,Ru) one-dimensional oxides, 140, 14 La_xMo₆Se₈ Chevrel-phase superconductor, **136**, 160 $Ca_{1-x}Sr_xNbO_3$ (0 $\leq x \leq 1$) perovskite-type phases, **141**, 514 SrTa₂S₅, 135, 325 CaTi₂O₄ with pseudo-brookite-type structure, **141**, 338 Superconductors cesium molybdenum bronze at low temperature, 137, 12 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$ (Ln = La,Nd,Eu,Tb), sol-gel synthesis and simul- $(C_4H_{12}N_2)_2[Fe_6(HPO_4)_2(PO_4)_6(H_2O)_2]\cdot H_2O \ templated \ by \ piperazine,$ taneous oxidation, 138, 141 **139,** 326 Bi₂Sr₂CaCu₂O_{8+δ}, heavily Pb-substituted single crystals, two-phase copper and silver chalcogenides, sonochemical synthesis, 138, 131 microstructures generating efficient pinning centers, 138, 98 $Cr_{2-2x}Mo_xO_3$, **140**, 350 $Bi_2Sr_2Ca_2Cu_3O_{10}, \ formation \ by \ transformation \ of \ Bi_2Sr_2CaCu_2O_8,$ Cs₃(HSeO₄)₂(H₂PO₄), **141**, 317 $Cs_5(HSeO_4)_3(H_2PO_4)_2$, 141, 317 **139,** 1 ErBa₂Cu₃O_{6.5}, half filling of O intercalation in, new orthorhombicity Cs₂PdSe₈ with open framework structure with double helical assemblies type and cell volume expansions near, 135, 307 of $[Pd(Se_4)_2]^{2-}$, letter to editor, **140**, 149 IBi₂Sr₂CaCu₂O_y, charge transfer-T_c relationship, **138**, 66 $Cs_4(SeO_4)(HSeO_4)_2(H_3PO_4)$, 141, 317 La_xMo₆Se₈ Chevrel phase Cs₅VW₄O₉VO₄(PO₄)₄ with intersection tunnnels, 141, 155 correlation of T_c and interatomic distances, 136, 151 CuInP₂S₆, soft-chemistry forms, **141**, 290 physical and superconducting properties, 136, 160 Cu₄Sn₇S₁₆, 139, 144 LiI₃Bi₂Sr₂CaCu₂O₈ layered cuprate, synthesis and characterization, 1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, 136, 93 141, 452 $Sr_{2-x}A_xCuO_2F_{2+\delta}$ (A = Ca,Ba), synthetic pathways and associated erbium isopropoxides, 141, 168 structural rearrangements, 135, 17 Er₂Ti₄O₂(OC₂H₅)₁₈(HOC₂H₅)₂, **135**, 149 ZrNCl, Li-doped, electronic band structure, 138, 207 Fe2.5Ti0.5O4 nanocrystals, by soft chemistry and high-energy ball mill-Superprotonic conductors ing, 139, 66 $\beta\text{-Cs}_3(\text{HSO}_4)_2[\text{H}_{2-x}(\text{P}_{1-x},\text{S}_x)\text{O}_4] \ (x\sim 0.5), \ \text{structure and vibrational}$ K₄Bi₂O₅, 139, 342 $KLn^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf; Ln^{III} = Ce-Lu$), 139, 248 spectrum, 139, 373 Superspace groups $K_4In_2(PSe_5)_2(P_2Se_6)$, one-dimensional compounds, 136, 79 four-dimensional, in description of modulated structure of InMO₃ KMgPO₄, 136, 175 KTb^{III}Tb₂^{IV}F₁₂, **139**, 248 $(ZnO)_m$ (M = In,Ga; m = integer), 139, 347 Surface area $LaBa_2Fe_3O_{8+w}$ (-0.20 < w < 0.83), cubic perovskite-type phase, 138, Al₂O₃-TiO₂ nanocrystals, 141, 70 $\text{La}_4\text{Co}_3\text{O}_{10+\delta}$ (0.00 $\leq \delta \leq$ 0.30), **141**, 212 hydrotalcite-derived MgAlO oxides calcined at varying temperatures, LaGaO₃ perovskite-type oxide-ion conductor doped with Sr and Mg, acid/base properties, 137, 295 Na-Fe/SiO₂ catalysts, coordinate geometry, 137, 325 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$ system, **140**, 377 $La_{1-x-y}A_xMnO_{3-\delta}$ (A = Na,K), 137, 19 $LaMS_3$ (M = Ti,V,Cr) at high pressure, 139, 233 $\text{LaNi}_{1-x}M_x\text{O}_{2.5+\delta}$ (M=Mn,Fe,Co) vacancy-ordered phase, 135, 103 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$ (0.5 \le x \le 0.9) perovskite, **139**, 388 La₅Ti₆S₃Cl₃O₁₅, **139**, 220 La₈Ti₁₀S₂₄O₄, **136**, 46 LiCoO₂ single crystals, letter to editor, 141, 298 $\text{Li}_{1-x}\text{Fe}_{5+x}\text{O}_8$ by solvothermal reaction, 141, 554 LiI₃Bi₂Sr₂CaCu₂O₈ layered cuprate, **141**, 452 Li-Mn-O spinels, **139**, 290 $Li_{0.84}W_{1.16}N_2$ via ammonolysis of LiF-WO₃, 138, 154 manganese oxides by reduction of KMnO₄ with KBH₄ in aqueous solutions, 137, 28 microwave-assisted, Na₅[B₂P₃O₁₃], letter to editor, 140, 154 Mo₂C 14 nm in average size supported on high specific surface area carbon material, 141, 114 AMoOPO₄Cl (A = K,Rb) with layer structure, 137, 214 MoS₂ nanocrystals from MoO₃ and elemental sulfur, 141, 270 $NaLnTiO_4$ ($Ln = Sm_Eu_Gd$) layered perovskites, 138, 342 SrTa₂S₅, superconductivity, 135, 325 $[N_2C_3H_5][AlP_2O_8H_2 \cdot 2H_2O]$ and $2[N_2C_3H_5][Al_3P_4O_{16}H]$, letter to editor, 136, 141 rotation twins, 135, 235 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$ connected through hydrogen bonding, 139, 207 Ta₃SBr₇, crystal structure, 140, 226 NdMo₆O₁₂, ordered hollandite-type compound, **136**, 87 Ta₂S₂C, combustion synthesis, **138**, 250 Ti_{0.3}[Ta₂S₂C], combustion synthesis, **138**, 250 [NH₃(CH₂)₄NH₃][Ga(PO₄)(PO₃OH)], 136, 227 [NH₃(CH₂)₈NH₃]₃[V₁₅O₃₆(Cl)](NH₃)₆(H₂O)₃, **136**, 298 Tellurium nitride fluorides, implications of structure of Sn(ND₃)₂F₄, 138, 350 $Pb_2Re_2O_{7-x}$ pyrochlores, 138, 220 poly(ethylene oxide) nanocomposites of misfit layer chalcogenides, 141, 323 Bi₂Te₄O₁₁, phase transitions, 135, 175 porous chromia-pillared tetratitanate, 136, 320 $A_2MP_2Se_6$ (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), 138, 321 Rb₁₂Nb₆Se₃₅ polymer with infinite anionic chains built up by Nb₂Se₁₁ units containing Se₃⁴⁻ fragment, **140**, 97 Rb₃Sc₂(AsO₄)₃, 139, 299 Rb₃Sn(PSe₅)(P₂Se₆), one-dimensional compounds, 136, 79 A_3MS_4 (A = Na,Rb; M = Nb,Ta), 139, 404 ScNiP, 137, 218 Sm₃NbSe₃O₄, **137**, 122 studies, 137, 206 $[Sn_2(PO_4)_2]^{2-}[C_2N_2H_{10}]^{2+} \cdot H_2O$, 140, 435 $Sn_2P_2S_6$, soft-chemistry forms, 141, 290 $A_2Sn_4S_9$ (A = K,Rb,Cs) layered compounds, flux synthesis, 141, 17 Sr₃₉Co₁₂N₃₁, 141, 1 chains in, 135, 111 $Sr_{2-x}A_xCuO_2F_{2+\delta}$ (A = Ca,Ba) superconductors, 135, 17 $Sr_{1-x}La_xMo_5O_8$ (0 $\leq x \leq 1$) with metallic properties, 138, 7 Sr₂NbN₃, 138, 297 Sr₃MRhO₆ with K₄CdCl₆ structure-type Zr₃Te, crystal structure, 139, 213 M = Sm,Eu,Tb,Dy,Ho,Er,Yb, 139, 79Zr₅Te₄, crystal structure, **139**, 213 M = Y,Sc,In, 139, 416Temperature tetragonal polycrystalline zirconia, doped and undoped nanopowders, IBi₂Sr₂CaCu₂O_v, 138, 66 $Tl_2Ru_2O_{7-\delta}$ pyrochlore at high pressure, **140**, 182 effects on (K_xNa_{1-x})MgF₃ perovskites, 141, 121 transition metal carbosulfides, 138, 250 vanadyl pyrophosphate mosaic crystals, 137, 311 tor La_xMo₆Se₈, **136**, 151 WO₃, orthorhombic phase formation via Ti-stabilized WO₃ · $\frac{1}{3}$ H₂O Temperature-programmed reduction phase, 135, 159 ZrW₂O₈ and Mo-substituted ZrW₂O₈ at low temperature, 139, 424 $[Zn(4,4'-bipy)(H_2O)(SO_4)] \cdot 0.5H_2O$ coordination polymer with inter- ## Tantalum AuTa₅S, synthesis and structure, **139**, 45 woven double-layer structure, 138, 361 $Ba_5Ta_4O_{15}-MZrO_3$ ($M = Ba_5Sr$) system, hexagonal perovskites in, synthesis and structural study, 141, 492 Bi₂O₃-Ta₂O₅ system, review, 137, 42 $CeTaO_{4+\delta}$ system, reversible oxidation/reduction in, TEM and XRD study, 140, 20 Co_{0.33}[Ta₂S₂C], combustion synthesis, **138**, 250 CrTa₂O₆, trirutile oxide based on Cr²⁺, structure and magnetism, Cu_{0.6}[Ta₂S₂C], combustion synthesis, 138, 250 Fe_{0.33}[Ta₂S₂C], combustion synthesis, **138**, 250 LiTaO₃ solid solutions with Mn²⁺, preparation and characterization, $Mg_5Ta_4O_{15},$ crystal structure refinement by Rietveld analysis of neutron powder diffraction data, 137, 359 Mn₁₁Ta₄O₂₁, structure and magnetic susceptibility and refinement of Mn₄Ta₂O₉ structure, 137, 276 NaTl, LiIn and LiCd phases resembling, pressure-induced transformation into β -brass-type alloys, 137, 104 Ni_{0.25}[Ta₂S₂C], combustion synthesis, **138**, 250 Si_x(Ta,Nb)Te₂, structural and microstructural aspects, 139, 105 TaReSe₄ layered crystals, structure, defect structure, microstructure, and A_3 TaS₄ (A = Na,Rb), synthesis and crystal structure, 139, 404 $Bi(Bi_{12-x}Te_xO_{14})Mo_{4-x}V_{1+x}O_{20} \ (0 \le x \le 2.5)$ solid solutions, synthesis and structural evolution, 139, 185 Bi₂Te₃ single crystals, behavior of Ag admixtures in, 140, 29 Er-Te binary and Er-Te-I ternary systems, nonstoichiometry in, 139, Pb_{1-x}In_xTe single crystals, point defect clusters revealed by X-ray diffuse scattering method, 137, 119 $Pb_2MgW_xTe_{(1-x)}O_6$ solid solution, dielectric measurements, DSC, structure, and phase diagram, 139, 332 PdTeI, single-crystal X-ray diffraction and electronic band structure Sb₂Te₃ single crystals, behavior of Ag admixtures in, 140, 29 Si_x(Ta,Nb)Te₂, structural and microstructural aspects, 139, 105 SmTe_{2-x} semiconductor, superstructure, **140**, 300 ALn_3Te_8 , flat Te nets of, site occupancy wave and infinite zigzag $(Te_2^2)_n$ U₃Te₅, crystal structure and magnetic properties, 139, 356 ZrTe₃, crystal structure and electronic band structure, 138, 160 charge transfer-T_c relationship in superconducting intercalates T_c correlation with interatomic distance in Chevrel-phase superconduc- Cu²⁺ in sol-gel-derived TiO₂, 138, 1 $Eu_{2-x}Sr_xNiO_{4+\delta}$, 141, 99 V-Ag catalysts, 141, 186 Terbium $KLn^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf; Ln = Ce-Lu$), synthesis and crystal structure, 139, 248 KTb^{III}Tb₂^{IV}F₁₂, synthesis and crystal structure, **139**, 248 Sr₃TbRhO₆, synthesis, characterization, and magnetic properties, 139, Tb₂Ba₂Cu₂Ti₂O_{11-δ}, sol-gel synthesis and simultaneous oxidation, TbBi₂O₄NO₃, preparation and crystal structure, 139, 321 Tb₃Si₂C₂, magnetic and electrical properties, 138, 201 N,N,N',N'-Tetramethylethylenediamine zirconium phosphate fluorides templated with, hydrothermal synthesis and crystal structure, **135**, 293 Thallium TlB₅O₈, crystal structure, **136**, 216 $TlB_5O_6(OH)_4 \cdot 2H_2O$, dehydration, 136, 216 TICl, TIBr, and TII, defects and ionic conductivity at high pressure and temperature, **141**, 462 Tl₂(MoO₃)₃PO₃CH₃, synthesis, structure, and properties, 138, 365 $TINbXO_6$ (X = W,Mo) ceramics, structural and dielectric properties, 141, 50 Tl₈Nb_{27.2}O₇₂, synthesis and crystal structure determination by TEM and single-crystal X-ray diffraction, **135**, 282 $Tl_2Ru_2O_{7-\delta}$ pyrochlore, high-pressure synthesis, crystal structure, and metal–semiconductor transitions, **140**, 182 Thermal analysis alkyltrimethylammonium chromates, 139, 310 $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$ phase transitions to $V_{0.27}W_{0.73}O_{2.865}$, 136, 284 NbO(O₂)_{0.5}PO₄·2H₂O, 137, 289 Thermal decomposition BaBPO₅, 135, 43 solids, modeling based on lattice energy changes alkaline earth carbonates, 137, 332 alkaline earth peroxides, 137, 346 zinc phenylphosphonate, analysis by temperature-dependent X-ray powder diffraction, **140**, 62 $Zr_xTi_{1-x}O_2$ (x=0.22,0.39,0.60) prepared by sol-gel synthesis, 139, 225 Thermal evaporation Bi₂S₃ thin films prepared by, properties, 136, 167 Thermal expansion negative, see Negative thermal expansion Thermal properties calcium-lead hydroxyapatites, 135, 86 $C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O$, 141, 343 $C_6H_{18}N_3^{2+} \cdot 2HPO_4^- \cdot 4H_2O$, **141**, 343 CuAl₂Si₂O₇(F,OH)₂, **141**, 527 K₄In₂(PSe₅)₂(P₂Se₆), one-dimensional compounds, **136**, 79 $A_2MP_2Se_6$ (A = K,Rb,Cs; M = Pd,Zn,Cd,Hg), 138, 321 Rb₃Sn(PSe₅)(P₂Se₆), one-dimensional compounds, **136**, 79 Thermal stability Tl₂(MoO₃)₃PO₃CH₃, 138, 365 Thermodynamics $ACI/TmCI_3$ (A = Cs,Rb,K), 135, 127 point-defect, $(Mg_xFe_{1-x})_{3-\delta}O_4$, **139**, 128 Ru-Y system, 138, 302 Thermoelectric power $Fe_2Mo_{1-x}Ti_xO_4$ spinel oxides, 140, 56 Thermogravimetry γ-Fe₂O₃ nanocrystalline particles, **137**, 185 Nd_2O_3 -Co-Co₂O₃ system at 1100 and 1150°C, **137**, 255 Thin films Bi₂S₃, prepared by thermal evaporation and chemical bath deposition, properties, 136, 167 diaminoanthraquinone, substitution pattern in, effect on physical properties, 141, 309 In-Bi₂S₃, annealed, structural and electrical properties, 138, 290 In₂S₃, study by diffraction of synchrotron radiation, 137, 6 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$ nH_2O , hydrothermal synthesis, **141**, 229 PZT, preparation on stainless steel using electrochemical reduction, 136, Thorium BaThN₂, synthesis and structural characterization, 138, 297 Cu₂Th₄(MoO₄)₉, structural skeleton, **136**, 199 $Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3$ perovskite series, structural study, 138, 307 Three-periodic nets mapped on isomorphic quotient graphs, geometrical relationships between, 138, 55 Thulium $ACl/TmCl_3$ (A = Cs,Rb,K), phase diagrams and thermodynamics, 135, 127 $KTm^{III}M_2^{IV}F_{12}$ ($M^{IV} = Tb,Zr,Hf$), synthesis and crystal structure, 139, 248 Tm₃Al₅O₁₂ garnet, stability, calorimetric study, **141**, 424 Tm(ClO₄)₃, crystalline and molecular structures, 139, 259 Tm₃Ga₅O₁₂ garnet, stability, calorimetric study, **141**, 424 Tm₃Si₂C₂, magnetic and electrical properties, 138, 201 Tin $BaSnO_3$, Ba_2SnO_4 , and $Ba_3Sn_2O_7$, Pr^{4+} doped in, EPR study, 138, 329 (Co,Ni,Cu)_{1+x}(Ge,Sn), B8-type phases, modulated structures and diffuse scattering, computer simulation, **135**, 269 Co_{1+x}Sn, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402 Cr₂Sn₃Se₇, spin glass-like behavior, 137, 249 Cu₂SnS₃, structure refinement, 139, 144 Cu₄Sn₇S₁₆, synthesis, electrical conductivity, and crystal structure, **139**, 144 Ga-In-Sn-O ceramic, oxygen atomic positions in, determination with direct methods and electron diffraction, letter to editor, 136, 145 $Ga_{3-x}In_{5+x}Sn_2O_{16}$, structure, **140**, 242 In₄Sn₃O₁₂, structural studies, **135**, 140 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$, connected through hydrogen bonding, synthesis and structure, **139**, 207 $Ni_{1+x}Sn$, nonstoichiometric B8-type alloy phases, sinusoidal diffuse scattering loci in, simulation, **140**, 402 Ni_{1+m}Sn_{1-x}P_x, B8-type solid solutions, Sn/P and interstitial Ni ordering in, electron diffraction study, **136**, 125 Pb^{II}Sn^{IV}(PO₄)₂, structure and stereochemical activity of Pb^{II} lone pair, 137, 283 Rb₃Sn(PSe₅)(P₂Se₆), one-dimensional compounds, synthesis, structure, and optical and thermal properties, **136**, 79 Sn⁴⁺, indium oxide doped with, structural studies, 135, 140 Sn(ND₃)₂F₄, structure, implications for synthesis of nitride fluorides, 138, 350 SnO₂ nanocrystals, structural characterization by X-ray and Raman spectroscopy, 135, 78 $[Sn_2(PO_4)_2]^2$ $[C_2N_2H_{10}]^2$ · H_2O , synthesis and crystal structure, **140**, Sn₂(PO₄)[C₂O₄]_{0.5} containing one-dimensional tin phosphate chains, synthesis and structure, 139, 200 Sn₂P₂S₆, soft-chemistry forms, 141, 290 $A_2Sn_4S_9$ (A = K,Rb,Cs) layered compounds, flux synthesis and characterization, **141**, 17 Titanium Al₂O₃-TiO₂ nanocrystals, preparation and characterization, **141**, 70 Ln_2 Ba₂Cu₂Ti₂O_{11- δ} (Ln = La, Nd, Eu, Tb), sol-gel synthesis and simultaneous oxidation, **138**, 141 6H-Ba(Ti,Fe³⁺,Fe⁴⁺)O_{3- δ} solid solution, structural analysis, **135**, 312 B₄C-Ti_x^{IV-VI}B_y, activated sintered materials, structural and mechanical properties, **137**, 1 $Bi_{1.74}Ti_2O_{6.62}$ pyrochlore, synthesis and structure, 136, 63 (Ca,Gd)₂(Al,Ti)O₄, crystal structure, 139, 204 CaTi_{1-2x}Fe_xNb_xO₃ perovskite series, structural study, **138**, 272 CaTiO₃, Gd-doped, charge compensation in, **124**, 77; comment, **137**, 355; reply, **137**, 357 CaTi₂O₄ with pseudo-brookite-type structure, synthesis, **141**, 338 CaTiO₃/SrTiO₃ system, structures in, **139**, 238 ${\rm Er_2Ti_4O_2(OC_2H_5)_{18}(HOC_2H_5)_2}$, synthesis, characterization, and structure, 135, 149 Fe₂Mo_{1-x}Ti_xO₄ spinel oxides, electrical resistivity and thermoelectric power measurements, **140**, 56 Fe_{2.5}Ti_{0.5}O₄ nanocrystals, obtained by mechanosynthesis and soft chemistry, structure, cation distribution, and properties, **139**, 66 Fe_{2.75}Ti_{0.25}O₄, cation distribution in, measurement by *in situ* anomalous powder diffraction with Rietveld refinement, **141**, 105 Hg_xTiS₂, host-layer restacking in, mechanism, **141**, 330 $La_{0.5+x+y}Li_{0.5-3x}Ti_{1-3y}Mn_{3y}O_3$ system, synthesis, phase diagram, and conductivity, **140**, 377 LaNi_{0.95}Ti_{0.05}O₃ perovskites, metal–insulator transitions in, **136**, 313 LaTiS₃, high-pressure synthesis, **139**, 233 La₅Ti₆S₃Cl₃O₁₅, synthesis and structural characterization, **139**, 220 La₈Ti₁₀S₂₄O₄, synthesis and crystal structure, **136**, 46 $\text{Li}_2\text{O-Fe}_2\text{O}_3$ -TiO $_2$ system, nonstoichiometric Li-pseudobrookite(ss) in, **141**, 221 Li-Ti-O system, phases formed under reducing conditions, **138**, 74 LiTi₂O₄ and Li₂Ti₃O₇ ramsdellites linked in solid solutions, X-ray and neutron diffraction studies, **141**, 365 MgTi₂O₅, pseudobrookite-type, crystal chemistry of cation order-disorder in, **138**, 238 MnTi_{1-x}Nb_xO₃ system, magnetic properties, 136, 115 $Na_{x-\delta}Fe_xTi_{2-x}O_4$ ($x=0.875, 0 \le \delta \le 0.40$), conductivity, **137**, 168 $Na_{1/2+x}La_{1/2-3x}Th_{2x}TiO_3$ perovskite series, structural study, **138**, 307 $NaL_{n}TiO_{4}$ (Ln = Sm, Eu, Gd) layered perovskites, magnetic properties, 138, 342 $Ln_{1-x}Nd_xTiO_3$ ($Ln=Ce,Pr; 0 \le x \le 1$), magnetic studies, letter to editor, 137, 181 (PbS)_{1.18}(TiS₂)₂, nanocomposites with poly(ethylene oxide), synthesis and characterization, **141**, 323 porous chromia-pillared tetratitanate, synthesis, 136, 320 $Sm_{1-x}TiO_3$ (x = 0.03,0.05,0.10), magnetic properties, **141**, 262 $\rm Sr_4Nb_4O_{14} – Sr_5Nb_4O_{15} – SrTiO_3$ system, perovskite-related phases in, 135, 260 TiNX (X = Cl,Br,I) system, electronic band structure, 138, 207 TiO_2 sol-gel-derived, Cu²⁺ ions in, TPR, ESR, and XPS study, **138**, 1 ultrafine particles, electronic state characterization by luminescence spectroscopy, **139**, 124 Ti₃O₅, phase transitions, **136**, 67 Ti(PO₄)(H₂PO₄), crystal structure from neutron powder data, **140**, 266 Ti₂SC, combustion synthesis, **138**, 250 Ti_{0.3}[Ta₂S₂C], combustion synthesis, 138, 250 $WO_3 \cdot \frac{1}{3}H_2O$ phase stabilized by, in formation of orthorhombic WO_3 , 135, 159 $Zr_xTi_{1-x}O_2$ (x=0.22,0.39,0.60) prepared by sol-gel synthesis, thermal decomposition and phase analysis, 139, 225 Topotactic synthesis layered calcium cobalt oxides, 141, 385 mosaic crystals of vanadyl pyrophosphate, 137, 311 TPR, see Temperature-programmed reduction Transmission electron microscopy CeTaO_{4+ δ} system, analysis of reversible oxidation/reduction, **140**, 20 γ -Fe₂O₃ nanocrystalline particles, **137**, 185 $InMO_3(ZnO)_m$ (M = In,Ga; m = integer), 139, 347 $LiCoO_2$, low-temperature samples and acid-delithiated products, **140**, 116 $Nd_4Ni_3O_8$, **140**, 307 Tl₈Nb_{27,2}O₇₂, 135, 282 UCl₄ and (KCl)_x(UCl₄)_y selectively deposited inside carbon nanotubes using eutectic and noneutectic mixtures of UCl₄ with KCl, **140**, 83 $Y_2Ba_4Cu_7O_{15-\delta}$, **139**, 266 Tungsten Ba₂WO₃F₄, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F-¹¹³Cd REDOR NMR study, **140**, 285 B₄C-W_x^{IV-VI}B_y, activated sintered materials, structural and mechanical properties, 137, 1 CdWO₃F₂, oxygen/fluorine ordering in, ¹⁹F MAS and ¹⁹F^{_113}Cd REDOR NMR study, **140**, 285 Cs₅VW₄O₉VO₄(PO₄)₄, air synthesis and intersection tunnnels, **141**, 155 $Fe_8V_{10}W_{16}O_{85}$ low-spin d^5 system, magnetic, electrical conductivity, and EPR studies, 137, 223 $H_{0.27}V_{0.27}W_{0.73}O_3\cdot 1/3H_2O$, phase transitions to $V_{0.27}W_{0.73}O_{2.865}$, X-ray, thermal, and HREM studies, **136**, 284 $KLi_{1-x}(Nb,W)_5O_9(PO_4)_3$, synthesis and intersecting tunnel structure related to ReO_3 , 136, 305 LaNi_{0.95}W_{0.05}O₃ perovskites, metal-insulator transitions in, 136, 313 LiF-WO₃, ammonolysis, in situ X-ray diffraction study: detection and crystal structure of Li_{0.84}W_{1.16}N₂, 138, 154 $\text{Li}_{0.84}W_{1.16}N_2$, synthesis by ammonolysis of LiF-WO₃ and crystal structure, **138**, 154 Lu₂W₃O₁₂, negative thermal expansion, 140, 157 $ANb_4WO_9(PO_4)_3$ (A = K,Rb,Cs), synthesis and intersecting tunnel structure related to ReO₃, 136, 305 NH₄NbWO₆ defect pyrochlore, crystal structure and phase transition, 141. 537 Pb₂MgW_xTe_(1-x)O₆ solid solution, dielectric measurements, DSC, structure, and phase diagram, **139**, 332 $Pb_x(PO_2)_4(WO_3)_{2m}$ (6 $\leq m \leq$ 10) bronze, characterization, 139, 362 Sc₂(WO₄)₃, negative thermal expansion, 137, 148 TINbWO₆ ceramics, structural and dielectric properties, 141, 50 $V_{0.27}W_{0.73}O_{2.865}$, formation from $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$, X-ray, thermal, and HREM studies, **136**, 284 WO_3 Bi₂O₃-WO₃ system, review, 137, 42 orthorhombic, formation via Ti-stabilized WO₃·½H₂O phase, 135, 159 WS₂, Al₁₃O₄(OH)₂₄(H₂O)⁷⁺₁₂ encapsulation into, and Rietveld structural characterization, **139**, 22 ZrW₂O₈ and Mo-substituted ZrW₂O₈, low-temperature synthesis, 139, 424 Tunnel structure Ba₃Li₂Cl₂(MoO)₄(PO₄)₆, **141**, 587 Cs₅VW₄O₉VO₄(PO₄)₄ synthesized in air, **141**, 155 intersecting, related to ReO₃, tungstoniobium monophosphates with, 136, 305 Twinning Ba₄(Ba_xPt_{1-x}²⁺)Pt₂⁴⁺O₉, diffraction and DAFS studies, 140, 201 $CeTaO_{4+\delta}$ system, TEM and XRD study, **140**, 20 Cs₂YbNb₆Br₁₈, **141**, 140 U Ultrafine particles rare earth molybdenum complex oxides, preparation and characterization, 140, 354 Ultraviolet diffuse reflectance spectra V-Ag catalysts, 141, 186 Ultraviolet-visible spectroscopy NbO(O₂)_{0.5}PO₄·2H₂O, **137**, 289 Uranium (KCl)_x(UCl₄)_y, deposition inside carbon nanotubes using eutectic and noneutectic mixtures of UCl₄ with KCl, **140**, 83 UAl₃C₃, crystal structure, 140, 396 UCl_4 , deposition inside carbon nanotubes using eutectic and noneutectic mixtures of UCl_4 with KCl, 140, 83 U₃Te₅, crystal structure and magnetic properties, **139**, 356 p-dialkylbenzene-urea inclusion compounds, order and disorder in, 141, 437 ٧ Valence Eu in CaS:Eu,La, 138, 149 mixed, in Lewisite, 141, 562 Pr in Pr-doped zircon, 139, 412 Vanadium $BaV_6O_{16} \cdot nH_2O$, hydrothermal synthesis and crystal structure, **140**, 219 $Ba_3V_2O_3(PO_4)_3$, with chain-like structure, **135**, 302 Ba₂(VO₂)(PO₄)(HPO₄)·H₂O, with trigonal bipyramidal VO₅ groups, hydrothermal synthesis and crystal structure, **140**, 272 $B_4C-V_x^{IV-VI}B_y$, activated sintered materials, structural and mechanical properties, 137, 1 Bi(Bi_{12-x}Te_xO₁₄)Mo_{4-x}V_{1+x}O₂₀ $(0 \le x \le 2.5)$ solid solutions, synthesis and structural evolution, **139**, 185 BiCa₂VO₆, synthesis and structure, 137, 143 BICOVOX.15, structure, single-crystal neutron diffraction study at room temperature, **141**, 241 BiCu₂VO₆, synthesis and structure, 141, 149 $\text{Bi}_9(V_{1-x}P_x)_2\text{ClO}_{18}$ series $(0 \le x \le 1)$, synthesis, crystal structure, IR characterization, and electrical properties, 136, 34 CaVO_{3-δ}, oxygen nonstoichiometry, structures, and physical properties, 135, 36 Ca₃(VO₄)₂, amorphization at high pressure, **139**, 161 α-CoV₃O₈, crystal structure and metal distribution, 141, 133 $Cs_5VW_4O_9VO_4(PO_4)_4$, air synthesis and intersection tunnnels, 141, 155 Fe₈V₁₀W₁₆O₈₅ low-spin d⁵ system, magnetic, electrical conductivity, and EPR studies, 137, 223 (H₂O)[V₂O₂(OH){O₃P(CH₂)₂PO₃}], hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89 $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$, phase transitions to $V_{0.27}W_{0.73}O_{2.865}$, X-ray, thermal, and HREM studies, **136**, 284 KPb₄(VO₄)₃ with anion-deficient apatite structure, **141**, 373 LaVS₃, high-pressure synthesis, 139, 233 $(\text{Li}_x \text{V}_{1-x})_3 \text{BO}_5$ ($x \simeq 0.3$), disordered S = 1 system, crystal structure and electronic state, **141**, 418 δLi_xV₂O₅ and MgV₂O₅, structural comparison, **136**, 56 Mn_{0.15}V_{0.3}Mo_{0.7}O₃, characterization, **138**, 347 $NaPb_4(VO_4)_3$ with anion-deficient apatite structure, 141, 373 $[NH_3(CH_2)_8NH_3]_3[V_{15}O_{36}(Cl)](NH_3)_6(H_2O)_3$, synthesis and structure, **136**, 298 NH₄VP₂O₇, structural study by X-ray powder diffraction, **136**, 181 Sr_{2-x}Pb_x(VO)(VO₄)₂ solid solutions, structural, IR, and magnetic studies, **140**, 417 V-Ag catalysts, temperature-programmed reduction, 141, 186 VO₂, polymorph prepared by soft chemical methods, 138, 178 VO₂(A), crystal structures and transition mechanism, 141, 594 (VO)₂P₂O₇, mosaic crystals obtained by oriented nucleation and growth, **137**, 311 $M(\text{VOPO}_4)_2 \cdot 4\text{H}_2\text{O}$ (M = Co(II), Ni(II)), layered compounds with distinct magnetic linear trimers, 137, 77 $V_{0.27}W_{0.73}O_{2.865}$, formation from $H_{0.27}V_{0.27}W_{0.73}O_3 \cdot 1/3H_2O$, X-ray, thermal, and HREM studies, 136, 284 $ZrV_2O_7,$ temperature-dependent phase transitions, in situ electron and X-ray diffraction studies, 137, 161 Vibrational analysis BaFe₁₂O₁₉ hexagonal ferrite, 137, 127 Vibrational mill Na_2SeO_3 synthesis in, by mechanochemical activation of $(SeO_2 + Na_2CO_3)$ mixture, 135, 256 Vibronic transitions Gd³⁺ and Eu³⁺ in crystalline materials and glasses of same composition, 136, 206 W Water Al₁₃O₄(OH)₂₄(H₂O)⁷⁺₁₂, encapsulation into MoS₂ and WS₂ and Rietveld structural characterization, **139**, 22 BaV₆O₁₆·nH₂O, hydrothermal synthesis and crystal structure, **140**, 219 Ba₂(VO₂)(PO₄)(HPO₄)·H₂O, with trigonal bipyramidal VO₅ groups, hydrothermal synthesis and crystal structure, **140**, 272 CaHPO₄· 2H₂O phosphates, composites with polymer, percolation and modeling of proton conduction in, **141**, 392 CaSO₄·2H₂O, dehydration, Controlled transformation Rate Thermal Analysis, **139**, 37 (1:1) $Cd_3^{II}[(Tr^{II}/Cr^{III})(CN)_6]_2 \cdot 15H_2O$ complexes (Tr = Co, Fe), structural and spectral studies, **140**, 140 (C₄H₁₂N₂)₂[Fe₆(HPO₄)₂(PO₄)₆(H₂O)₂] · H₂O templated by piperazine, synthesis and characterization, **139**, 326 [(CH $_3$ NH $_3$)_{1.03}K_{2.97}]Sb₁₂S₂₀·1.34H $_2$ O, hydrothermal synthesis and crystal structure, **140**, 387 $C_3H_{12}N_2^{2+} \cdot HPO_4^{2-} \cdot H_2O$, crystal structure and thermal behavior, **141**, 343 $C_6H_{18}N_3^{3+} \cdot 2HPO_4^- \cdot 4H_2O$, crystal structure and thermal behavior, 141, 343 H₂O-Na₂SO₄-Na₂HPO₄ system, isotherms, conductivity measurements, 140, 316 (H₂O)[V₂O₂(OH){O₃P(CH₂)₂PO₃}], hydrothermal synthesis and *ab initio* resolution by X-ray powder diffraction, **141**, 89 $H_{0.27}V_{0.27}W_{0.73}O_3\cdot 1/3H_2O,$ phase transitions to $V_{0.27}W_{0.73}O_{2.865},$ X-ray, thermal, and HREM studies, $136,\,284$ hydrated molybdenum bronze, Cs/Na ion exchange and synthesis of cesium molybdenum bronze at low temperature, 137, 12 Mn(ReO₄)₂·2H₂O, crystal structure, **138**, 232 Na₄P₂S₆·6H₂O, single-crystal structure determination, **141**, 274 NbO(O_2)_{0.5}PO₄·2H₂O, characterization, 137, 289 $[N_2C_3H_5][AlP_2O_8H_2\cdot 2H_2O]$ and $2[N_2C_3H_5][Al_3P_4O_{16}H],$ synthesis and structure, letter to editor, 136, 141 $[N(C_2H_5NH_3)_3]^{3+}[Sn(PO_4)(HPO_4)]^{3-}\cdot 4H_2O$, connected through hydrogen bonding, synthesis and structure, **139**, 207 $[NH_3(CH_2)_8NH_3]_3[V_{15}O_{36}(Cl)](NH_3)_6(H_2O)_3,$ synthesis and structure, **136**, 298 Ni_{1-x}Zn_{2x}(OH)₂(OCOCH₃)_{2x} nH₂O thin film, hydrothermal synthesis, 141, 229 role in mechanochemical reactions of MgO-SiO₂ systems, 138, 169 $[Sn_2(PO_4)_2]^2 - [C_2N_2H_{10}]^{2+} \cdot H_2O,$ synthesis and crystal structure, 140, 435 Sr₁₀[Sb₇O₁₃(OH)]₂[SbSe₃]₂Se·2H₂O, synthesis and crystal structure, **140.** 134 $TlB_5O_6(OH)_4 \cdot 2H_2O$, dehydration, 136, 216 $M(VOPO_4)_2 \cdot 4H_2O$ (M = Co(II),Ni(II)), layered compounds with distinct magnetic linear trimers, 137, 77 $WO_3 \cdot \frac{1}{3}H_2O$, Ti-stabilized phase, in formation of orthorhombic WO_3 , 135, 159 zirconium phosphate fluorides templated with amines, hydrothermal synthesis and crystal structure, 135, 293 [Zn(4,4'-bipy)(H₂O)(SO₄)] · 0.5H₂O coordination polymer with interwoven double-layer structure, synthesis and characterization, **138**, 361 $Zn(O_3PC_6H_5) \cdot H_2O$, thermal behavior, **140**, 62 Wurtzite structure ordering of metal atoms in, 138, 334 Χ XANES, see X-ray absorption near-edge structure X-ray absorption fine structure in situ analysis of Jahn-Teller distortion in LiNiO₂, letter to editor, **140**, 145 lithium manganese oxide local structure, 141, 294 X-ray absorption near-edge structure $Nd_{2-x}Sr_xNiO_y$ hole-doped and reduced compounds, **140**, 278 X-ray diffraction, see also Powder X-ray diffraction Ba₃AlO₄H, 141, 570 CeTaO_{4+δ} system, analysis of reversible oxidation/reduction, **140**, 20 Cs₅(HSO₄)₃(H₂PO₄)₂ solid acid with unique hydrogen bond network, **140**, 251 γ-Fe₂O₃ nanocrystalline particles, **137**, 185 Fe_{2.5}Ti_{0.5}O₄ nanocrystals synthesized by soft chemistry and high-energy ball milling, **139**, 66 In₂S₃ thin films, synchrotron radiation-based study, 137, 6 $A_4A'\text{Ir}_2\text{O}_9$ (A = Sr, Ba; A' = Cu, Zn), commensurate and incommensurate phases, 136, 103 $LiCoO_2$, low-temperature samples and acid-delithiated products, 140, 116 LiF-WO₃ ammonolysis, *in situ* study: detection and crystal structure of $\text{Li}_{0.84}\text{W}_{1.16}\text{N}_2$, **138**, 154 LiTi₂O₄ and Li₂Ti₃O₇ ramsdellites linked in solid solutions, **141**, 365 magnesium oxide–magnesium orthophosphate systems, **135**, 96 Na₃ScF₆, single-crystal high-pressure studies, 135, 116 $Pb_x(PO_2)_4(WO_3)_{2m}$ (6 $\leq m \leq$ 10) bronze, **139**, 362 PdTeI single crystals, 137, 206 Rb₂CdCl₄, 140, 371 Ti₃O₅, 136, 67 Tl₈Nb_{27,2}O₇₂, single-crystal studies, 135, 282 V-Ag catalysts, 141, 186 $\rm ZrV_2O_7$, in situ analysis of temperature-dependent phase transitions, 137, 161 X-ray diffuse scattering Pb_{1-x}In_xTe single crystals, detection of point defect clusters, 137, X-ray photoelectron spectroscopy Cu²⁺ in sol-gel-derived TiO₂, **138**, 1 X-ray spectroscopy SnO₂ nanocrystals, structural study, 135, 78 Υ Ytterbium BiO_{1.5}-YbO_{1.5}-CuO system, phase relations, 139, 398 Cs₂YbNb₆Br₁₈, twinning and atomic structure of twin interface, 141, $\text{KYb}^{\text{III}}M_2^{\text{IV}}\text{F}_{12}$ ($M^{\text{IV}}=\text{Tb,Zr,Hf}$), synthesis and crystal structure, 139, 248 Sr₃YbRhO₆, synthesis, characterization, and magnetic properties, 139, Yb₃Al₅O₁₂ garnet, stability, calorimetric study, **141**, 424 YbBa₂Fe₃O_{8+x} phases, powder neutron and X-ray diffraction studies, 136, 21 YbBi₂O₄NO₃, preparation and crystal structure, 139, 321 YbFe₂O₄ structure type, compounds with, frustrated magnetism and spin-glass behavior, **140**, 337 Yb₃Ga₅O₁₂ garnet, stability, calorimetric study, **141**, 424 Yttrium LiYO₂ doped with Eu³⁺, monoclinic and tetragonal structures, refinement, 137, 242 Ru-Y system, calorimetric study with phase diagram optimization, 138, 302 Sr₂YMn₂O₇, Ruddlesden–Popper phases, HRTEM study, **138**, 135 Sr₃YRhO₆ with K₄CdCl₆ structure, synthesis and characterization, **139**, Y³⁺, doping of Na₂SO₄, effect on electrical conductivity, 138, 369 YAlO₃ perovskite, stability, calorimetric study, **141**, 424 Y₃Al₅O₁₂ garnet, stability, calorimetric study, **141**, 424 Y₄Al₂O₉, high-temperature neutron diffraction study, **141**, 466 YB₅₆ with YB₆₆ structure, Y atoms in, digital HREM imaging, 135, 182 YBa₂Cu₃O_y, shock synthesis, effect of ionic radius difference of Y³⁺ and Ba²⁺, 136, 74 $Y_2Ba_4Cu_7O_{15-\delta}$, TEM and NQR studies, 139, 266 YBa₂Fe₃O_{8+w} triple perovskites, ⁵⁷Fe Mössbauer study, **139**, 168 YBa₂Fe₃O_{8+x} phases, powder neutron and X-ray diffraction studies, 136, 21 YBi₂O₄NO₃, preparation and crystal structure, 139, 321 $Y_{0.5}Ca_{0.5}MnO_3,$ charge-ordered states, distinction based on chemical melting, $\boldsymbol{137},\,365$ Y₃Ga₅O₁₂ garnet, stability, calorimetric study, 141, 424 Y₃Si₂C₂, magnetic and electrical properties, 138, 201 $[(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(RuO_2)_x \ (0 \le x \le 0.1)$ ceramics, preparation and electrical characterization, **141**, 282 Ζ Zeolites ethylenediamine-templated structures related to, in zinc arsenate and cobalt phosphate systems, synthesis, **136**, 210 Zinc AgZnPO₄, crystal structure and crystal chemistry, 141, 177 1,3-diammonium-propane zinc hydrogen phosphates with 12-ring layers and 4-ring ladders, syntheses, crystal structures, and physical properties, 136, 93 ethylenediamine-templated zinc arsenate, synthesis and zeolite-type structure, **136**, 210 EuZnIn intermetallic compounds, ¹⁵¹Eu Mössbauer spectroscopy and magnetic susceptibility, **137**, 174 $InMO_3(ZnO)_m (M = In, Ga; m = integer)$, modulated structure described by four-dimensional superspace group, **139**, 347 $LaNi_{0.95}Zn_{0.05}O_3$ perovskites, metal-insulator transitions in, 136, 313 LiZnPO₄, polymorph with cristobalite-type framework topology, 138, 126 mechanosynthesized zinc ferrite, structural disorder in, 135, 52 $Ni_{1-x}Zn_{2x}(OH)_2(OCOCH_3)_{2x}$ nH_2O thin film, hydrothermal synthesis, **141**, 229 [Zn(4,4'-bipy)(H₂O)(SO₄)] · 0.5H₂O coordination polymer with interwoven double-layer structure, synthesis and characterization, 138, 361 A_4 ZnIr₂O₉ (A = Sr,Ba), commensurate and incommensurate phases, 136, 103 Zn–Mn spinel ferrites, nanocrystals obtained by high-energy ball milling, chemical homogeneity, **141**, 10 Zn(O₃PC₆H₅)·H₂O, thermal behavior, 140, 62 $\gamma\text{-}Zn_2P_2O_7,$ structure determination from X-ray powder diffraction data, 140, 62 A_2 ZnP₂Se₆ (A = K,Rb,Cs), synthesis, structure, and optical and thermal properties, 138, 321 Zn(ReO₄)₂ anhydrous perrhenates, crystal structure, 138, 232 ZnS, sphalerite and wurtzite structures, ordering of metal atoms in, 138, 334 Zinc phenylphosphonate thermal decomposition, analysis by temperature-dependent X-ray powder diffraction, **140**, 62 Zircon Pr-doped, valence and localization of Pr in, 139, 412 Zirconium $BaHf_{1-x}Zr_xN_2$ solid solution, synthesis, structure, and magnetic properties, 137, 62 $Ba_5Ta_4O_{15}$ – $MZrO_3$ (M=Ba,Sr) system, hexagonal perovskites in, synthesis and structural study, **141**, 492 CeZrO₄ powders, oxygen release behavior and appearance of compounds κ and t*, 138, 47 ethylenediamine-templated 1-D [enH₂][Zr(HPO₄)₃] and 2-D [enH₂]_{0.5}[Zr(PO₄)(HPO₄)], crystal structures, **140**, 46 K₄Zr₆Br₁₈C, structure, 139, 85 $KLn^{III}Zr_2^{IV}F_{12}$ (Ln^{III} = Ce–Lu), synthesis and crystal structure, 139, 248 tetragonal polycrystalline zirconia, doped and undoped nanopowders, synthesis by spray pyrolysis, **141**, 191 zirconium phosphate fluorides templated with amines, hydrothermal synthesis and crystal structure, 135, 293 Zr4+ dissolved in $Ni_{1-x}O$, defect clusters and superstructures, **140**, 361 doping of Na_2SO_4 , effect on electrical conductivity, **138**, 369 Zr₃Al₃C₅, crystal structure, **140**, 396 Zr_{2.7}Hf_{11.3}P₉, bonding and site preferences, **136**, 221 ZrNX (X = Cl,Br,I) system, electronic band structure, 138, 207 ZrO_2 monoclinic and tetragonal phases, Mo^v in, EPR study, **136**, 263 nondoped sol–gels prepared with hydrolysis catalysts, tetragonal nanophase stabilization, **135**, 28 texture properties, effect of supported Na+, 138, 41 $[(ZrO_2)_{0.92}(Y_2O_3)_{0.08}]_{1-x}(RuO_2)_x \ (0 \le x \le 0.1)$ ceramics, preparation and electrical characterization, **141**, 282 ZrTe₃, crystal structure and electronic band structure, 138, 160 Zr₃Te, crystal structure, 139, 213 Zr₅Te₄, crystal structure, 139, 213 $Zr_xTi_{1-x}O_2$ (x=0.22,0.39,0.60) prepared by sol-gel synthesis, thermal decomposition and phase analysis, **139**, 225 ZrV_2O_7 , temperature-dependent phase transitions, *in situ* electron and X-ray diffraction studies, **137**, 161 ZrW₂O₈ and Mo-substituted ZrW₂O₈, low-temperature synthesis, 139,